

FEMFAT 2021 News and More

MAGNA

ECS Simulation Conference 2021 Gaier, ECS

History of FEMFAT Releases, New Versioning

- About two new versions are released every year.
- Major release = **5.4**, Service release = **5.4a**, Bug fixes and new Features = **5.4.1**

MAGNA

• FEMFAT 2021 (instead FEMFAT 5.5) will be released Q3 2021!

Date: April 2021 / Author: ECS St. Valentin

New Features FEMFAT 5.4.1 released June 2020 (1/2)

• Highlights

- SPECTRAL: Assessment of short fiber reinforced plastics
- Search local maximum/minimum values of damage/safety and output as group and/or table (for base material)
- Support of multiple ABAQUS odb-versions (High efficiency without upgrade of the odb-file)

VISUALIZER and WELD

- Visualization of node characteristics
- Add and rearrange multiple subwindows
- Support of χ MCF file format V3.0 for geometry-based weld definitions
- Weld Seam Scanner improvements
- Mark welding seams as checked/unchecked
- Extended stress interpolation and averaging possibilities based on element nodal stresses for weld elements

MAGNA

New Features FEMFAT 5.4.1 released June 2020 (2/2)

SPECTRAL: Assessment of Short Fiber Reinforced Plastics

Grouping Function Based on Local Maximum/ Minimum Values of Damage/Safety (for Base Material)

INPUTS:

- Define range for damage / safety factor to be considered
- Relative filter limit for critical area size: e.g. 50% of local extrema
- Number of required extrema: e.g. 10

Create/Modify Group Entries
Nodes Nodes Based on Elements
 ○ Based on Damage Values / Safety Factors from 0.000e+00 to 0.000e+00 □ only most critical node per SPOT nugget ○ Based on Isothermal Nodal Temperature [°C] from 20.00 to 20.00
Based on Local Critical Areas
Damage / Safety Factor
from Minimum ~
to Maximum ~
Relative limit for size of local area 50.0000 [%]
Number of relative extrema 10
Damage / Safety Factor
from Value
to Minimum
Relative Factor / Divisor of critical result 50.0000
New

Display of Nodes with Local Critical Areas in VISUALIZER

• Nodes with relative damage maxima

Date: April 2021 / Author: ECS St. Valentin

Output Table of Nodes with Local Critical Areas in the Report File

The entries are analogous to the group menu and are treated the same internally. However, all variables are decoupled and independent of the entries in the group menu.

Location	NodeLab	Damage	Res	ult Pos.	Rel.Str.Grad	Stress Ampl.	Mean Stress	LocFatigLim I
1	1835	3.209e+04	top	/ surf	0.1144	1213.6919	-45.8876	321.0130
2	1851	1.378e+03	top	/ surf	0.1287	888.5620	31.1083	302.5340
3	8991	3.057e+02	bot	/ trans	0.3578	795.8170	10.7916	307.4100
4	9020	2.913e+02	top	/ surf	0.3342	801.9175	-10.2546	312.4611
5	1847	2.410e+01	top	/ surf	0.1292	642.0276	-23.5760	315.6582
6	2106	6.735e-02	top	/ surf	0.1112	368.7176	15.6678	306.2397
7	2124	3.477e-02	top	/ surf	0.1021	347.4174	15.2929	306.329
8	2160	1.115e-02	top	/ surf	0.0969	313.7703	14.085	6 306.619
9	2149	7.136e-03	top	/ surf	0.1436	303.061	14.414	3 306.540
10	2178	5.667e-03	top	/ surf	0.1222	299.121	6 13.256	306.81

Report Items				
General Input	Data			
🗹 Header				
🗹 General	Input Data			
Specimo	en Material Data			
🗹 Influenc	e Factors			
Structural Noc	le Data			
Damage D	ata/Safety Factors:	🗹 Тор	Bottom	
Max. Dama	ge Component:	🗹 Тор	Bottom	
Stress Gra	dient:	🗹 Тор	Bottom	
Mean Stres	s Rearrangement:	🗌 Тор	Bottom	
Surface	Roughness			
Technol	ogical Size			
Temper	ing Condition			
Temper	ature			
🗌 Range o	of Dispersion (10% to 90%)			
WELD Specifi	c Output			
🗹 Local Di	irection Specific Information			
Notch Factors	actor Specific Information			
SPOT Specific	Output			
Critical F	Results for All Sheets			
Local Extrema	a in Areas			
🗹 Based o	on Local Critical Areas			
Damage	e / Safety Factor			
from	Minimum		~	·
to	Maximum		~	*
Relative	limit for size of local area			50.0000 [%]
Number	of relative extrema			10

===

Support of Multiple ABAQUS odb-Versions

- FEMFAT recognizes automatically the version of an ABAQUS odb-File
- No time-consuming upgrade of the odb-file is necessary, if the version is installed
- During the installation process the needed ABAQUS versions can be selected
- At FEMFAT start preferred version can be selected in the drop-down box

FEMFAT 5.4.2@vallinsv35004.val.eu.adglob Select Components	o.net 2 ×
Select the components you want to install; clear Next when you are ready to continue.	the components you do not want to install. Click
 FEMFAT Help EN Help GER Abaqus ODB 2020 Abaqus ODB 2019 Abaqus ODB 2018 Abaqus ODB 2017 	Click on a component to get a detailed description
InstallBuilder	Zurück Vor Abbrechen

🔳 Edit femfat.ini		– 🗆 X
FEMFAT ini-File Master File: D:/femfat_workdir/femfat.ir Destination Path: D:/femfat_workdir	ni	
Memory Settings Default Interfaces Paths GUI		Reset Current Page
Interface FE Structure	NASTRAN Bulk]
Interface Output Result	NASTRAN OP2 V	
Preferred Abaqus-Version	odb_2020 odb_2017 odb_2018 odb_2019 odb_2020	
Save Changes	Discard C	hanges

VISUALIZER: Visualization of Node Characteristics

Date: April 2021 / Author: ECS St. Valentin

VISUALIZER: Visualization of Material Assignment

Special for element-based material display:

- Materials are displayed analogous to the PIDs
- Elements whose nodes have all been assigned the same material are colored in the corresponding material color
- Elements whose nodes have been assigned different materials are colored white
- Elements whose nodes have not been assigned materials are colored gray

Output of Node Characteristics in the dma-File

Desired entries in the dma-file can be selected.

In the FPS Setting and DMA-Column Tabs the Node Characteristics and the functions "Replace" and "Insert" were extended accordingly.

FP	S Setting DMA-Column Setting	Resu	It Modification	n Modu	ule Specif	ïc	
Nu	mber of Scratch Results:	21) Default	<u> </u>	Deselect /	All	
М	ain Results Stress General F (7) (5) (4	actors1)	General Fa (0)	ctors2	Surface (0)	Misc (0)	Node Charact. (5)
	 Node Characteristics Material Temperatur Surface Roughness Technological Size Range of Dispersion 						
		1					

FPS Setting DMA-Column Setting F	Result Modification Modu	le Specific	
Output Results Selected:	ault 🦉 Clear All		
Col Res	ult	Group	
1Damage2Inverse(Damage)3Stress Amplitude4Mean Stress		Main Results Main Results Stress Stress	
5 arctan(Mean Stress/Ampl	tude Stress)	Stress	
Main Results Stree Clear All	General Factors2	Surface Misc. Node C	haract.
Column	▶	Col	umn
Material: Replace with.			0
Temperatur: Insert	Main Results	•	0
Surface Roughness: Technological Size: Range of Dispersion:	Stress General Factors General Factors Surface	Image: boot state Image: boot state 1 Image: boot state Image: boot state 2 Image: boot state Image: boot state Image: boot state Image: boot state	0 0 0
	Misc. Node Charact	Material	
Context menu		Temperatur Surface Roughne	ess
(right mouse)		Range of Dispers	ze sion

VISUALIZER: Add and Rearrange Multiple Subwindows

1.

MAGNA

Hel

0

0

3

- 1. Select nodes
- 2. Add all subwindows
- 3. Rearrange (according to node or current positions)

3.

Date: April 2021 / Author: ECS St. Valentin

The Idea behind χ MCF

- χMCF is a standardized XML file format for the geometrybased definition of joints (no definition based on FE data!)
- Used for exchange of joint definitions between CAD, CAE and CAM, e.g. for
 - Automated assembly of batch-meshed parts
 - Automatic programming of welding robots

Design, Construction

Workflow of Weld Definition via χ MCF 3.0

MAGNA

Workflow of Weld Definition using the Weld Seam Scanner, Improvements

- Generate a raw wdf-file with the Weld Seam Scanner (contains only paths, dummy node colors, no weld type)
- Raw wdf-file is read into VISUALIZER and here exact weld type, weld orientation, start/end nodes etc. can be checked and modified. The raw wdf-file cannot be used directly for a FEMFAT calculation!
- Save wdf-File
- Import in FEMFAT
- Start WELD analysis

WELDSEAMSCANNER 1.3

MAGNA

New Functionalities for the Checking of Welding Seams

- Welding seams with missing information (e.g. welded side) that have been automatically generated (via xMCF, Weld Seam Scanner or automatic seam separation) are marked as "Unchecked" → Checking the weld definition is strongly recommended!
- In the VISUALIZER, such seams are displayed with a purple seam line.

New Functionalities for the Checking of Welding Seams

- Mark a welding seam as checked/unchecked with the "Check/Uncheck Weldseam(s)" button from the "Welding" toolbar or with the "Seam checked by user" flag in the "WELD Definition" window.
- It is also possible to set several seams to checked with the frame selection.

WELD Definition Weld Type/Seam Shape BUTT-JOINT BEDGE JOINT TOP-JOINT Fillet weld with root undercut Double fillet weld HV-Seam DHV-seam DHV-Seam OHY-Seam OHY-Seam OHY-Seam Ohty-Seam O	
	WELD Definition Weld Type/Seam Shape BUTT-JOINT BEGE JOINT Double fillet weld with root undercut Double fillet weld HV-Seam DHV-Seam DHY-Seam DHY-Seam DHY-Seam DHY-Seam DHY-Seam DHY-Seam Weld Seam DHY-Seam

 The pivot point is automatically set to the center of the currently displayed seam

WELD: New Parameter in Stress Interpolation Method for Automatic Stress Correction

- Extended stress interpolation method: D_{Assesspoint} = a t_{Neighbor} + b t_{Evalulated} + c
- Stress interpolation parameter can be entered in the GUI and in the WELD database

WEL	D Stress	
) () ()	Stress Averaged at Element	
	O Sheet Thickness Factor:	1.000
	Stress Interpolation Parameters:	A: 0.500 B: 0.300 C: 0.000
05	Stress Averaged along Seam	
O	Element Nodal Stress (non Averaged)	

WELD: Extended Stress Averaging Possibilities

MAGNA

Date: April 2021 / Author: ECS St. Valentin

1)

2)

3)

RBE2-Spider as Inner Elements of SPOT Nuggets

- Following modelling types will be supported in FEMFAT spot:
 - Added the RBE2 in the center of the nugget (modelling variant 1)
 - Removed inner shell elements and added RBE2 (modelling variant 2)

MAGNA

Replaced inner shell with RBE2 (variant 2)

Standard model +

RBE2 (variant 1)

Creation Options of H3D Files in Radioss

• Supported in FEMFAT:

Starting RADIOSS and getting H3D usin	ng HV-Trans	S:
🛞 HyperWorks Solver Run Manager (@DEWLT359)	_	• ×
<u>File Edit View Logs Solver Co-simulation HyperWorks H</u> elp		
Input file(s): FEMFAT_B_0000.rad		7
Options: -v 2019.2 -nt 4		
Use SMP: -nt 2 Use MPI options Use solver control	Schedule delay	
Running 1 job.	Run	Close

• **NOT** Supported in FEMFAT:

Using "-noh3d", the Solver Run Manager is forced NOT to start the HV-Trans script after the run is finished.

The H3D file is generated by RADIOSS itself anyway.

Starting RADIOSS for getting H3D using native export:

HyperWorks Solver Run Manager (@DEWLT359)		×
<u>File Edit View Logs Solver Co-simulation HyperWorks</u> Help		
Input file(s): FEMFAT_B_0000.rad		õ
Options: -v 2019.2 -nt 4 -noh3d		
Use SMP: -nt 2 Use MPI options Use solver control Schedule dela	зу	
Running 1 job. Run	Close	

Date: April 2021 / Author: ECS St. Valentin

Display of Load Spectra for "Detailed Results" Group

MAGNA

New Functions in Rainflow-matrix Viewer

- The rainflow.exe can also be executed standalone.
- Via file dialog a tmp-file can be opened.
- Click on a bar to display a subwindow

Open Rainflow-Matrix file	×
Directory: 🦳 femfat_workdir 📃 🖻 🖆 🥕 🦽	E • . 🗰 📋
fte_001_CDBNNAxUUU_Rainflowmatrix.tmp	
Eile Name: fte_001_CDBNNAxUUU_Rainflowmatrix.tmp	<u>о</u> к

Date: April 2021 / Author: ECS St. Valentin

New Features of FEMFAT 5.4.2 released February 2021

New stress gradient analysis method

- Results Manager: multiple fps-file selection
- Results Manager: Enhanced 'Formula' combination method
- SPECTRAL: Output of equivalent stress PSDs as ASCII CSV file
- Dynamic memory allocation for load histories
- Import of averaged-at-nodes stresses (and strains for HEAT) from ABAQUS odb
- New material class and material data for elastomers (natural rubber) for shore hardness 40 to 60.

What was the problem?

- A complex shaped structure is usually meshed automatically with quadratic tetrahedrons
- FEMFAT calculates the stress gradient along Finite Element edges
- The maximum stress gradient is usually perpendicular to the surface
- But often there are no Finite Element edges perpendicular to the surface
 - → inaccurate results!

Our solution

 A stress gradient is a vector pointing in the direction of the largest stress decrease, which can be reconstructed by its components along the Finite Element edges:

MAGNA

Date: April 2021 / Author: ECS St. Valentin

New Stress Gradient Analysis Method

- Additional improvements
 - Usage of superimposed stresses in ChannelMAX
 - \rightarrow Ensures the invariance of the stress gradient with respect to the analysis type (static mounting or inertia relief)
 - Equivalent method to TransMAX. Same results are obtained for same loading.
 - Vector Reconstruction reduced: Accelerated analysis with reduced time steps for superposition, but mostly same accuracy

Date: April 2021 / Author: ECS St. Valentin

- Further improvements
 - Only Finite Element edges with decreasing stresses are considered for gradient reconstruction, because there is no support effect for bulges ("negative" notches).

New Stress Gradient Analysis Method

• Stress gradient progress at notch root into the depth

New Stress Gradient Analysis Method, Example

- Stress gradient result, old method
- Vector reconstruction

MAGNA

FEMEAT

New Stress Gradient Analysis Method, Example

• Damage result, old method

 Damage distribution, vector reconstruction

MAGNA

Date: April 2021 / Author: ECS St. Valentin

Results Manager: Select Multiple fps-Files

• Select more than one fps-file in the selection dialog

				-				
FEMFAT 5.4.2 - femfat	*					_		×
File View Analysis Op	tions Templates Help							
🔿 🔒 😕 🖪 📓	🚺 🝺 📲 🛛 Current Working Directory: C:/fem	fat_workdir				FE	IMFA	Ì
Results Manager	Result Combination							
Result Combination	Input FPS Files Formulas Output FPS File							1
	Insert FPS File					Combination	Method	
						Linear		
	Input File: [ftile1.fps" "file2.fps" "file3.fps"				Insert	O Formula		
						O Critical		
	Result Selection	📘 Open					×	
	Current Label:	Lookin	femfat workdir		V 🙆 🏚 📂 📰 🗸		All	
		Look ji.		^				
BASIC	Label		Name		Date modified	Туре		
Observe INA V		Ouick access	tile1.tps		08.04.2021 18:57	FPS File		
ChannelMAX		Quick decess	file3 fps		08.04.2021 18:57	FPS File		
TransMAX			Les mesups		00.04.2021 10.57	TISTIC		
HEAT Sehitoglu		Desktop						
SPECTRAL								
SPECIKAL								
SPOT Remeshing		Libraries						
STRAIN Calc								
Results Manager		This PC						
rteourio manager		-						
			1					
		Network					~	
			File <u>n</u> ame:	file1.fps" "file2.fps" "file3.fps"	~	<u>O</u> pen		
			Files of type: F	EMFAT Permanent Scratch (*.fp	s) ~	Cancel		

Results Manager: Enhanced 'Formula' Combination Method

- The user can control the determination of the critical assessment point (e.g. at welding seams: weld toe, weld root, top or bottom, etc.).
- Useful functionality for WELD sensitivity analysis.

Templates Help
Elastomere_Analysis_Settings
GL_2010
WELD_Sensitivity_Damage_all
WELD_Sensitivity_Damage_gap
WELD_Sensitivity_Damage_inclination_angle
WELD_Sensitivity_Damage_penetration_degree
WELD_Sensitivity_Damage_seam_thickness

LEDO EN E	ormulae e			WEED_OCHONING_Damage_gap
nput FPS Files	ornulas Ou	tput FPS File		WELD_Sensitivity_Damage_inclination_a
-Formula Definiti	ion			WELD_Sensitivity_Damage_penetration_
				WELD_Sensitivity_Damage_seam_thick
Name		Formula	Critical Result	Critical Position from
User def 1	[File_1:Da	mage_M mod]*3	Max ~	Formula Output Result 🗸
User def 2	[File_2:Str	ess_Ampl.]	Max ~	Formula Output Result
User def 3			Max ~	All Files in Formula
User def 4			Max ~	File_1
User def 5			Max ~	Formula Output Result
User def 6		Formula Output Result: The critical layer will be determined from the formula result after	combination	ı.
User def 7		All Input Files: The critical layer will be determined from the most critical result of all inpu	t files befor	e combination.
		All Files in Formula: The critical layer will be determined from the most critical result of a	II files used	in the formula before combination.
		selected file. The childen ayer will be determined in on the most childen esuit of the se	iccleu nie be	nore combination.

Result Combination

SPECTRAL: Output of Equivalent Stress PSDs as ASCII CSV File (*.psd)

MAGNA

Date: April 2021 / Author: ECS St. Valentin

Outlook FEMFAT 2021 (planned to be released in Q3 2021)

FEMFAT 5.4.3 - femfat2	*
File View Analysis Opti	ions Templates Help
🔿 🔒 📇 🖪 🛛	👔 🝺 📲 🛛 Current Working Directory: C:/femf
SPECTRAL	Stress/Spectral Data
FE Entities	Spectral Data Input File
E Groups	🕞 Import
L Stress/Spectral Data	
🚰 Material Data	FE Definition PSD Definition
* Node Characteristics	Modal Stresses
Sectors Influence Factors	Input File
The Analysis Parameters	ERFH5 ESI
Scratch Setting	
Cutput	ANSYS RST
Report	ABAQUS ODB
Analyze	Opper Limit.
Visualization	Transfer Functions
	Input File
BASIC	NASTRAN PUNCH ~
ChannelMAX	Statistics
Channelwax	Number of Unit Load Cases: 0
TransMAX	Number of Spectral Lines: 0
HEAT Sehitoglu	Constant Stress
SPECTRAL	File Format File Name
SPOT Remeshing	OP2 NASTRAN
STRAIN Colo	
STRAIN Calc	
Results Manager	

Highlights

- New multi-segment S-N curve model
- Automatic material assignment
- Automatic channel generation and assignment of load time data to channels
- VISUALIZER: New graphic kernel and enhanced post processing possibilities
- SPOT: New advanced self piercing rivet model
- Methods
 - WELD Automatic Stress Correction: Evaluation distance 0 for root assessment
 - Combination of influence factors according to the German FKM-Guideline
 - BREAK: Static safety factor analysis available in STRAIN calc
- Textual and graphical output
 - Display exact point coordinates in the S-N diagram and Haigh diagram
 - Critical load combination separate output of times for maximum and minimum stress
 - WELD: Pro-file output of both ROOT and TOE results as table
 - Simultaneous output of SPOT detailed results and base material results to dma-file
 - SPOT: Output of the history of section forces as CSV file
 - Output of cycle limit in Haig-diagram
- Interfaces
 - ESI HDF5 stress interface for SPECTRAL
 - Accelerated ABAQUS interface (import of elemental/nodal forces only if needed)
- Miscellaneous
 - ALTAIR licensing for FEMFAT inside ANSYS

New Multi-Segment S-N Curve Model

• Support of S-N curve model with 4 segments in FEMFAT:

© MPT Engineering

- Zone 1: Low Cycle Fatigue
- Zone 2: High Cycle Fatigue
- Zone 3: Very High Cycle Fatigue
- Zone 4: Miner Modification

MAGNA

New Multi-Segment S-N Curve Model

Material Data		Visualization
Type Dependent S-N Data		Local S-N Curve
Type-Code of S-N Curve:	Multi-Segment Model	Local S-N Curve
Low Cycle Fatigue		
Slope of S-N Curve:	20.00 (optional, will be autocompleted)	
Cycle Limit:	10000 (optional, will be autocompleted)	1000 -
Slope of S-N Curve for Shear Loading:	0.00 (optional, will be autocompleted)	
Cycle Limit for Shear Loading:	0 (optional, will be autocompleted)	
High Cycle Fatigue		
Slope of S-N Curve:	11.00	
Cycle Limit of Endurance:	2000000	
Stress Limit of Endurance:	310.0 [N/mm2]	
Cycles at Failure:	0 (not used for analysis)	1e+000 1e+001 1e+002 1e+003 1e+004 1e+005 1e+006 1e+007 1e+008 1e+009 1e+010
Ultimate Strength:	0.0 [N/mm2] (not used for analysis)	wunder in Load Cycles in (-)
Survival Probability:	90.0000 [%]	N9015 LCF HCF VHCF >VHCF Stress [N/mm2]: 9017 3510 2006
Slope of S-N Curve for Shear Loading:		Cycles [-] 1.00e+004 8.64e+005 1.00e+008
Cycle Limit of Endurance for Shear Loading:	0 Modification Method for Multi-Segment S-N Curve	Supre F. 7.8 4.3 30.0 59.0 Survival Probability (%): 80.0000
Very High Cycle Fatigue	Modify Slope k1 (Low Cycle Fatigue)	Operate Specimen S-N Curve
Slope of S-N Curve:	30.00 Modify Slope k2 (Very High Cycle Estique)	LCF HCF VHCF
Cycle Limit:		Stress [N/mm2]: 501.8 310.0 272.1
Slope of S-N Curve for Shear Loading:	0.00	Slope E: 20.0 11.0 30.0
Cycle Limit for Shear Loading:	0	Survival Probability (%): 90.0000
MINER Modified		Most Critical Node Label: 12618
Parameter a:	2.00	O DETAILED RESULTS Group Node Label:
Parameter b:	-1.00	Close

Date: April 2021 / Author: ECS St. Valentin

Automatic Material Assignment

Date: April 2021 / Author: ECS St. Valentin

Automatic Channel Generation and Assignment of Load Time Data to Channels

NASTRAN Subcase label is used for automatic assignment of RPC load time history.

MAGNA

Date: April 2021 / Author: ECS St. Valentin

© MPT Engineering / Disclosure or duplication without consent is prohibited

VISUALIZER: New Graphic Kernel and Enhanced Post Processing Possibilities

- New graphic kernel from Ceetron
 - Increased performance.
 - Long term support of new graphic cards by usage of newer OpenGL versions.
 - Prework for future enhanced functionalities as e.g. result display on cutting planes.
- Enhancements
 - Custom resolution and advanced options for screenshots, e.g. 4K images
 - Transparent mode for hidden parts
 - Area select for elements
 - Add neighboring elements
 - Inversion of visible elements
 - Edge detection and feature lines

VISUALIZER: Transparent Mode for Hidden Parts

MAGNA

Date: April 2021 / Author: ECS St. Valentin

VISUALIZER: Transparent Mode for Hidden Parts

40

30

30

100

Date: April 2021 / Author: ECS St. Valentin

© MPT Engineering / Disclosure or duplication without consent is prohibited

MAGNA

VISUALIZER: Transparent Mode for Hidden Parts

MAGNA

VISUALIZER: Edge Detection and Feature Lines

MAGNA

Date: April 2021 / Author: ECS St. Valentin

Date: April 2021 / Author: ECS St. Valentin

SPOT: New advanced Self Piercing Rivet Model

- Assessment of sheet failure and rivet failure in one analysis run.
- Assessment of stresses from nugget model and forces/moments from connecting beam element
- Stress based assessment of stamped sheet (failure position 1)
- Stress based assessment of die sheet (failure positions 2 and 3)
- Force based assessment of rivet (failure position 4)
- New <rivet_advanced> entry in SPOT database

WELD: Reduced assessment distance for root

 Assessment distance for automatic stress correction can be chosen different for root and toe:

MAGNA

Combination of Influence Factors According to the German FKM-Guideline

Extract from the FKM-Guideline

The design factors of rod-shaped (1D) non-welded components for normal stress and for shear stress are *1

$$\begin{split} \mathbf{K}_{\mathrm{WK},\sigma} &= (4.3.1) \\ &= \frac{1}{n_{\sigma}} \cdot \left(1 + \frac{1}{\widetilde{K}_{\mathrm{f}}} \cdot \left(\frac{1}{K_{\mathrm{R},\sigma}} - 1 \right) \right) \cdot \frac{1}{K_{\mathrm{V}} \cdot K_{\mathrm{S}} \cdot K_{\mathrm{NL},\mathrm{E}}} , \\ \mathbf{K}_{\mathrm{WK},\tau} &= \\ &= \frac{1}{n_{\tau}} \cdot \left(1 + \frac{1}{\widetilde{K}_{\mathrm{f}}} \cdot \left(\frac{1}{K_{\mathrm{R},\tau}} - 1 \right) \right) \cdot \frac{1}{K_{\mathrm{V}} \cdot K_{\mathrm{S}}} . \end{split}$$

 $\begin{array}{lll} n_{\sigma}, & \ldots & K_t \cdot K_f \mbox{ ratio, Chapter 4.3.2,} \\ \tilde{K}_f & \mbox{ constant, Table 4.3.1,} \\ & \mbox{ if no better estimate is available,} \\ K_{R,\sigma}, & \ldots & \mbox{ roughness factor, Chapter 4.3.3,} \\ K_V & \mbox{ surface treatment factor, Chapter 4.3.4,} \\ K_S & \mbox{ coating factor, Chapter 4.3.4,} \\ K_{NL,E} & \mbox{ constant for GG, Chapter 4.3.5.} \end{array}$

Aim of the formulas: Reduced roughness sensitivity in notches!

Date: April 2021 / Author: ECS St. Valentin

Node Characteristics

Temperature Process Influence WELD Local Material Properties Misc.		
Notches Fatigue Notch Factor Kf (FKM): 1.000		
		~
	>	

BREAK for STRAIN Calc

 Static safety factor analysis based on measured strains

FEMFAT 5.4.3 - femfat*				_		×
File View Analysis Options	Templates Help					
🔿 🔒 😕 🖪 🛛	👔 📝 📲 Current Working [Directory: C:/femfat_workdir		FE	MF	AT
STRAIN Calc	Analysis Parameters					
Strain Gages	Analysis Target					
늘 Strain Gage Groups	 Damage 	MINER Modified ~				
Material Data	 Endurance Safety Factor 	Sig_m = const. ~	Cycles:	0.0e+00		
Gage Characteristics	Static Safety Factor BREAK	FEMFAT 5.0 V	Criterion:	Ultimate Stren	gth	~
Linfluence Factors	Global Parameters Analysis Filter	Cutting Plane Parameters				
Analysis Parameters	Stress Selection					
Cutput	Automatic		~			
B Papat	Survival Probability	00.000000 /0/1				
Report	Painflow Counting	90.000000 [%]				
Analyze	Number of Painflow Classes:			64		
Visualization	Rainflow Counting Method:	FEMEAT 5 1				
BASIC	Amplitude Limit for Class Filter:	0.0 [N/mm2]				
ChannelMAX	High Resolution					
TransMAX						
	Result Group	ing an Oraun	Results	Visualization at Critical Gage		
nex i senitogiu	Group Warrie. Most Critical Ga	iges Group	O Partic	ular Gage		
SPECTRAL	Number of Nodes: 10		Label:		0	
SPOT Remeshing						
STRAIN Calc						
Results Manager						

MAGNA

Display Exact Point Coordinates in the S-N and Haigh Diagram

- Display Exact Point Coordinates in the S-N and Haigh Diagram by catching points
- Marker can be fixed
- Position of marker can be changed

MAGNA

Critical Load Combination - Separate Output of Times for Maximum and Minimum Stress

WELD: Pro-File Output of Both ROOT and TOE Results as Table

D Result	. Table:								
Node	Damage	Critical Element	Туре	Position	Notch Factor	Attribute			
5	3.170E-06	14	222	Start /Toe /Bot	1.24	C106			
	Damage	Element	Туре	Position	Notch Stress Ampl.	Notch Mean Stress	Fatigue Limit	Crit. Stress	
	5.428E-09	13	220	Middle/Toe /Top	170.02	166.50	156.18	Sig equiv	
	7.140E-09	13	220	Middle/Root/Top	30.83	173.17	37.00	Sig parallel	
	3.170E-06	14	222	Start /Toe /Bot	229.52	233.10	177.77	Sig normal	
	4.710E-09	14	222	End /Root/Bot	81.98	180.70	192.15	Sig normal	
	8.296E-09	15	224	Middle/Toe /Bot	104.90	29.51	62.08	Tau (Shear)	
	1.107E-09	15	224	Middle/Root/Bot	88.40	167.96	32.30	Tau (Shear)	
Node	Damage	Critical Element	====== Туре	Position	Notch Factor	Attribute			
							Node Characteristics	Report Items	
							S Influence Eactore	General Input Data	
	Damage	Element	Type	Position	Notch Stress Ampl.	Notch Mean Stress		Header	
	• • • • • • • • • • • • •		• • • • • • •				Strain Gage Data	General Input Data	
							Analysis Parameters	Specimen Material Data	
							Cutput	Structural Node Data	
							Report	Damage Data/Safety Factors:	
- WELD	Result Table							Daniege Dataroarety Factors.	
		5					Analyze	Max. Damage Component	
		3 					Analyze	Max. Damage Component. Stress Gradient:	
		9 ====================================					Analyze	Max. Damage Component. Stress Gradient: Mean Stress Rearrangement.	
		9 =====================================					Analyze	Max. Damage Component. Stress Gradient: Mean Stress Rearrangement. Surface Roughness Technological Size	V Top V E V Top V E V Top V E
		9 =====================================					Analyze	Max. Damage Component Stress Gradient Mean Stress Rearrangement Surface Roughness Technological Size Technological Size	
		9					Analyze	Max, Damage Component Stress Gradient Mean Stress Rearrangement Surface Rouphness Technological Size Technological Size Temperature	∑Top ∑E ∑Top ∑E ∑Top ∑E
		9					Analyze	Max, Damage Component Stress Gradient Mean Stress Rearrangement Stress Rearrangement Strechnological Size Technological Size Tempering Condition Temperature Range of Dispersion (10% to 90'	1 Top 2 E 2 Top 2 E 2 Top 2 E 2 Top 2 E
		9					Analyze	Max, Damage Component Stress Gradient Mean Stress Rearrangement Surface Roughness Technological Size Tempering Condition Temperature Range of Dispersion (10% to 90° Fatgue Notch Factor Kf (FKM)	() Top () E () Top () E () Top () E () Top () E
		9					Analyze	Max, Damage Component. Stress Gradient. Mean Stress Rearrangement. Surface Roughness Technological Size Tempering Condition Temperature Range of Dispersion (10% to 90° Fatigue Notch Factor Kf (FKM) WELD Specific Output	∑ Top ∑ E ∑ Top ∑ E ∑ Top ∑ E
		9					Analyze	Max, Damage Component: Stress Gradient: Mean Stress Rearrangement: Surface Roughness Technological Stze Tempering Condition Range of Dispersion (10% to 90') Fatigue Notch Factor Kf (FKM) WELD Specific Output Local Direction Specific Informati	() Top () E () Top () E () Top () E () Top () E () () () () () () () () () () () () () (
		9					→ Analyze an Visualization	Max, Damage Component: Max, Damage Component: Stress Gradient: Mean Stress Rearrangement: Surface Roughness Tempering Condition Tempering Condition Temperature Range of Dispersion (10% to 90°) Fatigue Notch Factor KY (FKM) WELD Specific Output Local Direction Specific Information	5 Top 9 E 7 Top 9 E 9 Top 9 E 9 Top 9 E
		9					Analyze	Max, Damage Component Stress Gradient Mean Stress Rearrangement Stress Gradient Guide Roughness Technological Size Tempering Condition Temperature Range of Dispersion (10% to 90° Fatigue Notch Factor Kf (FKM) WELD Specific Output Local Direction Specific Information WELD Result Table	() Top () E () Top () E () Top () E () Top () E

SPOT: Simultaneous Output of SPOT Detailed Results and Base Material Results to dma-File

- In FEMFAT 5.4 only the critical SPOT result could be output together with the base material result.
- Now also the SPOT detailed result can be output together with the base material result.

Col							
Col Result				Group	Group		
1 Damage incl. SPOT - Detailed Result 2 Inverse(Damage) 3 Stress Amplitude 4 Mean Stress			lt Main Resul	ts			
			Main Resul	ts			
			Stress	Stress			
5	arctan	(Mean Str	ess/Amplitude Stres	ss) Stress			
6	SPOT -	Critical	Nugget Result	Main Resul	ts		
Main H	Results	Stress	General Factors1	General Factors2	Surface	Misc.	Node Charact
							Column
Damag	je:			🗙 Include S	POT - Deta	iled Re	sult 1
Safet	y Factor	в:					0
Inver	se(Damag	ge):					2
	se(Safe	ty Factor	B):				Θ
Inver	ive Stre	ess Gradi	ent:				Θ
Inver Relat	Live Still		t Result:				6
Inver Relat SPOT	- Critic	at Nugge					Θ
Inver Relat SPOT Log10	- Critic (Damage)	: :					
Inver Relat SPOT Log10 Log10	- Critic (Damage) (Inverse	: : e Damage)	:				Θ

Output of Cycle Limit in Haig-Diagram

- Example specimen Haigh-diagram
 - Standard-Haigh-diagram valid for 10 million cycles
 - User defined tension/compression Haigh-diagram valid for 10 million cycles
 - User defined shear Haigh-diagram valid for valid for 8 million cycles

- Example local Haigh-diagram
 - valid for 8.24 million cycles (analysed value)

Date: April 2021 / Author: ECS St. Valentin

DRIVING EXCELLENCE. INSPIRING INNOVATION.

Date: April 2021 / Author: ECS St. Valentin