

Integrated durability approach using measured wheel forces for robust and faster design convergence

2021 ECS Simulation conference FEMFAT

Author – G Raja Shekar, Varun Chaudhari & Kangde Suhas

Mahindra & Mahindra Ltd., Mahindra Research Valley-Chennai, India

Agenda

- Company profile
- Objective
- Current challenges in CAE
- Integrated Durability simulation (IDS) process
- RLDA Fatigue analysis
- Equivalent static load case deck generation
- Benefits of IDS process
- Conclusion

Company Profile

- Mahindra & Mahindra is \$21 billion multinational group with a presence in more than 100 countries and employing over 250,000 people.
- Operation expanded to 22 key industries that form the foundation of every

modern economy.	AEROSPACE	\$A	AFTERMARKET	\$Ĉ\$	AGRI INDUSTRY		
	AUTOMOTIVE		BOATS		CLEAN ENERGY	P	
25 Mahindra Rise.	CONSTRUCTION EQUIPMENT		CONSULTING	ŝ	DEFENCE		
	FARM EQUIPMENT	<u>84</u>	HOSPITALITY		INFORMATION TECHNOLOGY		
	INSURANCE BROKING		LOGISTICS		POWER BACKUP		
	REAL ESTATE & INFRASTRUCTURE		RETAIL		RURAL HOUSING FINANCE		
	STEEL		TRUCKS & BUSES	15 E 34	TWO WHEELERS	6 76	
	VEHICLE & EQUIPMENT FINANCE						

Objective

- Objective of Integrated durability simulation (IDS) is to derive generic static load cases and establish automated RLDA-integrated simulation process for Vehicle Durability evaluation.
- Typical failures on vehicle system will be observed during developmental test cycles. Failures are caused due to dynamic loads acting on these parts.
- Failure cannot be captured in CAE simulation, when static analysis was performed. Hence dynamic analysis by taking WTF of RLDA need to performed.
- Loads used for analysis form a critical step for accurate Fatigue life prediction.
- By performing dynamic fatigue analysis, realistic forces can be captured on parts and hence reduce the surprises due to load uncertainty.

Current challenges in full vehicle fatigue analysis

Currently dynamic fatigue simulations are carried out manually. If BIW has 30 hard point locations, full vehicle unit load case deck with 180 load collectors and load steps to be created in Nastran deck.

Time consuming and prone for error

- Mapping each unit load case to corresponding Load history files manually to generate a Fatigue deck (FFJ) per track and do fatigue simulation.
 Time consuming and prone for error
- Calculating total damage by linear superposition of individual damage results by applying relevant factors from Duty cycle in HYPERVIEW.
 Prone to error
- Fatigue simulation results are hard to interpret. Unable to predict most damaging track and time point which causes the failure in part.

Challenges achieved with IDS process

Challenges	Manual process 😕	Using IDS process 😃		
Unit load case deck	Manual setup for 180 load step in Nastran deck	Process is automated		
Mapping load step number with track files column number	Mapping of 180 load case to corresponding Load history to generate a Fatigue deck (FFJ) per track	Process is automated – FFJ generated for each track has mapped 180 steps with correct column numbers		
Individual fatigue files for each track	Manual mapping of FFJ for each track	Process is automated – FFJ files generated as per track		
Calculating total damage	Manual calculating total damage by linear superposition of individual damage in HyperView	Process is automated. Gives total damage H3D file		
Providing R2G solution	Fatigue simulation results are hard to interpret	Extraction of equivalent static load case for better visualization.		

IDS Process

- Below flowchart describes the IDS process.
- Hard point table (text format) and load history files from ADAMS (ASCII format) are mapped with unit load case deck file.
- Fatigue analysis for each track is performed in FEMFAT

ADAMS Load generation

- Generation of load history files from ADAMS using measured road profiles in ASCII format (forces in each direction for all hard points)
- Output:

One TXT file per hard point containing Time, FX, FY, FZ, MX, MY, MZ in specified sequence. The name of the .TXT file match the hardpoint name mentioned in the hard point table.

 For e.g. In case of 30 hard points, there need to be 30 Load history TXT files for 1 track (e.g. GVWP1)

	Fx	Мх							
5 -5 -15 -25 -35 -45	00 00 00 00 00 00 00 00 00 00	1000 1000 1000 3 6 8 11 14 17 19 22 25	Time +0.00000000e+000 +7.8125000e-003 +1.5625000e-002 +2.3437500e-002 +3.1250000e-002 +3.9062500e-002	FX +8.1374799e+002 +1.3498430e+002 -1.9176701e+001 +2.1157980e+002 +4.8041800e+002 +2.1449860e+002	FY -4.4857601e+001 -6.1323609e+000 -2.7249420e+001 -6.6026253e+001 -4.1153858e+001 +8.0182123e+000	FZ -5.2314301e+002 -5.8069031e+001 -3.3488930e+001 -1.3013210e+002 -2.4868250e+002 -7.7819199e+001	MX +3.7027600±+002 +7.0560493±+001 -8.3437843±+000 +1.3404671±+002 +2.4114590±+002 +1.1436970±+002	MY +2.3406100e+002 +3.9929409e+001 -7.3133111e+000 +7.0445084e+001 +1.4083870e+002 +6.7006012e+001	MZ -2.9897000e+002 -3.9469280e+001 +4.7580042e+000 -7.7341377e+001 -1.6197749e+002 -6.7303177e+001
14(120 100 80 40 20 -20		My	+4.6875000e-002 +5.4687500e-002 +6.2500000e-002 +7.0312500e-002 +7.8125000e-002 +8.5937500e-002 +9.375000e-002	-6.9582947e+001 -1.4242380e+002 -1.7853050e+002 +1.4570930e+002 +5.0624969e+002 +9.9156387e+001	+2.5373390e+001 +1.8816620e+001 +1.5992300e+001 +3.6034911e+000 -4.1922642e+001 -8.6119972e+001 -6.0456619e+001	+1.5245710e+001 +1.6629009e+001 +8.9056435e+000 -2.3343589e+000 -9.0998253e+001 -2.9163739e+002 -8.1636681e+001	-8.6272118e+001 -1.7376320e+002 -1.8421049e+002 -1.3916161e+002 +1.0002290e+002 +2.5660379e+002 +5.8725651e+001 1.7111710e.002	-4.3826950e+001 -9.0474297e+001 -9.6517479e+001 -7.4491043e+001 +5.2967720e+001 +1.4580569e+002 +2.7068090e+001	+3.8139881e+001 +6.9105003e+001 +7.2201447e+001 +5.7986931e+001 -5.6489540e+001 -1.7270160e+002 -3.0940121e+001
	Time	Time	+1.0937500e-001	-1.3138890e+002	+5.1759200e+000	+1.2320500e+001	-2.0417720e+002	-1.0723360e+002	+7.8043114e+001
180 140 60 20 -20	Fz	Mz	+1.1718750e-001 +1.2500000e-001	-1.8892760e+002 -9.7216599e+001	+6.2840271e+000 -7.2505002e+000	+4.9336181e+000 -1.6522200e+001	-1.9151480e+002 -4.0555031e+001	-1.0066910e+002 -2.3051861e+001	+7.4542839e+001 +1.8300.00e+001
									0

GVWP1.txt

ADAMS Load generation

- Hard point table (HP Table.csv) : contains hard point coordinates with names
- Load files (.txt) : Load file from ADAMS matching names HPTable.csv
- Duty cycle : Has information on tracks and repeats

	Hard point table					Track Files	
1 2 3 4 5 6 7 8 9 0	HP_name W501_FS_Steering_3UJ_26032018_bgl_rack_hsg_ W501_FS_Steering_3UJ_26032018_bgr_rack_hsg_ W501_FS_Steering_3UJ_26032018_bgs_rack_hsg_ W501_FS_VP0_bkl_lca_front_on_ges_chassis_flex W501_FS_VP0_bkl_lca_rear_on_ges_chassis_flex W501_FS_VP0_bkl_uca_front_on_ges_chassis_flex W501_FS_VP0_bkl_uca_rear_on_ges_chassis_flex W501_FS_VP0_bkl_uca_rear_on_ges_chassis_flex W501_FS_VP0_bkl_uca_rear_on_ges_chassis_flex W501_FS_VP0_bkl_uca_rear_on_ges_chassis_flex W501_FS_VP0_bkl_uca_front_on_ges_chassis_flex W501_FS_VP0_bkl_uca_rear_on_ges_chassis_flex W501_FS_VP0_bkl_uca_front_on_ges_chassis_flex W501_FS_VP0_bkl_uca_front_on_ges_chassis_flex	x m 831.22 m 831.22 m 835.98 767.31 1290.47 x 1007.3 890.11 1140.7 767.31	y -185.5 185.5 -315 -315 -461.88 -444 -444 315	z 469.57 550.43 437.44 453.7 860.77 672.21 650.83 437.44	Name GVWHF GVWLW GVWP1 GVWP2 GVWRR GVWRR GVWTT	Name	ARB_26032018_flex_bgl_arb_bushing_on_ges_c ARB_26032018_flex_bgr_arb_bushing_on_ges_c eering_3UJ_26032018_bgl_rack_hsg_mount_bc eering_3UJ_26032018_bgr_rack_hsg_mount_bc eering_3UJ_26032018_bgs_rack_hsg_mount_rh 20_bkl_lca_front_on_ges_chassis_flex.txt
1 2 3 4	W501_FS_VP0_bkr_lca_rear_on_ges_chassis_flex W501_FS_VP0_bkr_top_mount_on_ges_chassis_fl W501_FS_VP0_bkr_uca_front_on_ges_chassis_flex W501_FS_VP0_bkr_uca_rear_on_ges_chassis_flex	1290.47 ex 1007.3 x 890.11 1140.7	315 461.88 444 444	453.7 860.77 672.21 650.83		GVWP1_W501_FS_VF GVWP1_W501_FS_VF GVWP1_W501_FS_VF GVWP1_W501_FS_VF	20_bkl_lca_rear_on_ges_chassis_flex.txt 20_bkl_top_mount_on_ges_chassis_flex.txt 20_bkl_uca_front_on_ges_chassis_flex.txt
	Duty cycle	acks Nu in VWP1 VWP2 VWTT VWLWP VWHF VWRR	imber of i one ADT o X1 X2 X3 X4 X4 X5 X6	repeats cycle (N)		Image: Gry P1_W501_FS_VF Image: Gry P1_W501_FS_VF	20_bkl_uca_rear_on_ges_chassis_flex.txt 20_bkr_lca_front_on_ges_chassis_flex.txt 20_bkr_lca_rear_on_ges_chassis_flex.txt 20_bkr_top_mount_on_ges_chassis_flex.txt 20_bkr_uca_front_on_ges_chassis_flex.txt 20_bkr_uca_rear_on_ges_chassis_flex.txt 20_bkr_uca_rear_on_ges_chassis_flex.txt 20_bkr_uca_rear_on_ges_chassis_flex.txt 20_bkr_uca_rear_on_ges_chassis_flex.txt

NASTRAN Unit Load case deck generation

Unit load cases created – 6 load steps for each hard point – F_x, F_y, F_z, M_x, M_y, M_z. Total load step=30x6=180 load steps

Fatigue analysis using load case mapping

- Force history for each hard point is respectively applied to each unit load case in Channel MAX, FEMFAT
- One FEMFAT Job deck file (FFJ) per track viz. GVWHF.FFJ, GVWP1.FFJ etc.

<pre>setValue {}</pre>	{}	NumChannelTable 1
<pre>setValue {}</pre>	{}	MaxStressFileFormat 1 10
<pre>setValue {}</pre>	{}	MaxStressInputFile 1 {RDW501Base-D-0100-007 017.op2}
<pre>setValue {}</pre>	{}	LoadCaseNumber 1 1
<pre>setValue {}</pre>	{}	MaxScratchFileFormat 1 2
<pre>setValue {}</pre>	{}	MaxHistoryInputFile 1 GVWP1_W501_FS_Steering_3UJ_26032018_bgl_rack_hsg_mount_bottom_on_ges_chassis_flex.txt
<pre>setValue {}</pre>	{}	MaxColumn 1 2
<pre>setValue {}</pre>	{}	NumChannelTable 180 Column number in track file
<pre>setValue {}</pre>	{}	ChannelTableCurLabel 2
<pre>setValue {}</pre>	{}	MaxHistoryInputFile 2 GVWP1_W501_FS_Steering_3UJ_26032018_bgl_rack_hsg_mount_bottom_on_ges_chassis_flex.txt
<pre>setValue {}</pre>	{}	MaxColumn 2 3
<pre>setValue {}</pre>	{}	ChannelTableCurLabel 3
<pre>setValue {}</pre>	{}	MaxHistoryInputFile 3 GVWP1_W501_FS_Steering_3UJ_26032018_bgl_rack_hsg_mount_bottom_on_ges_chassis_flex.txt
<pre>setValue {}</pre>	{}	MaxColumn 3 4
<pre>setValue {}</pre>	{}	ChannelTableCurLabel 4
<pre>setValue {}</pre>	{}	MaxHistoryInputFile 4 GVWP1_W501_FS_Steering_3UJ_26032018_bgl_rack_hsg_mount_bottom_on_ges_chassis_flex.txt
<pre>setValue {}</pre>	{}	MaxColumn 4 5
<pre>setValue {}</pre>	{}	ChannelTableCurLabel 5
<pre>setValue {}</pre>	{}	MaxHistoryInputFile 5 GVWP1_W501_FS_Steering_3UJ_26032018_bgl_rack_hsg_mount_bottom_on_ges_chassis_flex.txt
<pre>setValue {}</pre>	{}	MaxColumn 5 6
setValue {}	{}	ChannelTableCurLabel 6
setValue {}	{}	MaxHistoryInputFile 6 GVWP1_W501_FS_Steering_3UJ_26032018_bgl_rack_hsg_mount_bottom_on_ges_chassis_flex.txt
setValue {}	{}	MaxColumn 6 7
setValue {}	{}	ChannelTableCurLabel 7
setValue {}	{}	MaxHistoryInputFile 7 GVWP1_W501_FS_Steering_3UJ_26032018_bgr_rack_hsg_mount_bottom_on_ges_chassis_flex.tx/c
setValue {}	{}	MaxColumn 7 2
setValue {}	{}	ChannelTableCurLabel 8
setValue {}	{}	MaxHistoryInputFile 8 GVWP1 W501 FS Steering 3UJ 26032018 bgr rack hsg mount bottom on ges chassis flex.txt

Damage Superposition - RLDA Fatigue life

 Total damage is calculated by linear superposition of individual damage results by applying relevant factors from the given Duty Cycle.

Tracks	Number of repeats		
	in one ADT cycle (N)		
GVWP1	X1		
GVWP2	X2		
GVWTT	X3		
GVWLWP	X4		
GVWHF	X5		
GVWRR	X6		

Report generation: Hotspot fatigue life

- Most damaging track is identified
- Detailed results requested at each identified Hotspot for further processing.

Detailed results

- Fatigue analysis is again performed for DETAILED RESULTS nodes
- Output of this fatigue analysis will be partial and total damage files (.pdh&.tdh)

Worst Track & Sample number for Hotspots

 Most damaging track – critical track and time point is identified for each hot spot

Node ID Node ID Host damaging track		Cumulative Damage for complete duty cycle	Most Damaging track	Sample No – Time point which causes highest damage
7911488	0.264700	0.711	GVWP2	3994
7911489	0.264700	0.711	GVWP2	3994
7910796	0.189200	0.619	GVWRR	15242
7910797	0.189200	0.619	GVWRR	15242
8059703	0.108600	0.336	GVWRR	15242
7896842	0.167800	0.326	GVWRR	38574
7896843	0.167800	0.326	GVWRR	38574
8059743	0.100500	0.262	GVWP2	3994
7898266	0.077800	0.218	GVWRR	32554
7898268	0.077800	0.218	GVWRR	32554
7881902	0.037630	0.087	GVWP2	4493
7881874	0.027330	0.059	GVWP2	2546
7903182	0.034700	0.059	GVWRR	38574
7896839	0.022650	0.043	GVWRR	38574
7896840	0.022650	0.043	GVWRR	38574
602492	0.012010	0.040	GVWRR	32554

Equivalent static load case

- Damage history (tdh and pdf) files post processed and worst time instance identified
- Equivalent static load case inertia relief Nastran deck is exported identified sample point which can be used for faster red to green iterations

Load Steps (15) Node_7911488_Sample_3994_GVWP2 Node_7910796_Sample_15242_GVWRR Node_7896842_Sample_38574_GVWRR Node_7898266_Sample_32554_GVWRR Node_7881902_Sample_4493_GVWP2 Node_7881874_Sample_2546_GVWP2 Node_7734490_Sample_12337_GVWRR Node_973584_Sample_38458_GVWRR Node_973584_Sample_3276_GVWP2 Node_7966619_Sample_38341_GVWRR Node_594571_Sample_383505_GVWRR

Benefits using IDS process

- Easy to interpret the fatigue results, as most damaging track and time point contributing to it is identified and Equivalent static load case deck generated
- With this automated process, faster design iterations can be performed to identify the hot spots in CAE.
- Inputs and outputs of different software's/solution methods are integrated in common framework called as Integrated Durability Simulation.

Conclusion

- Conventional method of doing dynamic fatigue simulations is replaced with integrated durability simulation (IDS) for faster design convergence.
- Using this approach, the complete process from load synthesis, fatigue analysis, design improvement deck creation to report generation is automated in CAE simulation.
- IDS process is robust, and quality of simulation improves as there is no human interference during the simulation process.
- With this automated simulation process, time for performing design iterations is reduced. With reduced time required, cost incurred on manpower for a particular project will be lesser.
- Equivalent static load case deck generated from IDS simulation can be used for optimization. Faster design convergences can be achieved and validated for weight reduction, material changes, size and shape change proposals.
- Good correlation for dynamic strains and fatigue failure locations is demonstrated with this new real world and robust approach.

Mahindra Rise.