

Vector Reconstruction – a new Gradient Computation Method

ECS Simulation Conference 2021

Agenda

1 Quickstart

- 2 Introduction
- 3 New Gradient Method
- 4 Comparison of Methods
- 5 <u>Case Study</u>
- 6 <u>Summary</u>

Quickstart

The Key Information in less than 2 Minutes

Completely new method for stress gradient calculation: "Vector Reconstruction"

Only consideration of positive stress gradients (no support effect for stress increase)

Affects all modules with gradient (BASIC, MAX, SPECTRAL) new handling of middle nodes in case of parabolic elements

Advantages: max. gradient is computed (perpendicular to surface), unified method for all modules, no influence of number of channels in ChannelMAX.

Introduction

What is the stress gradient?

Due to geometric and design properties, locations with stress concentrations (notches) often occur in reality. Typically the stress distribution is not constant, but has a peak in the notch with decaying values for the surrounding material.

Introduction in Four Questions (2/4)

How can we consider the stress gradient, how can it be computed for arbitrarily complex geometries?

The gradient is calculated from the difference of the stress tensors of neighboring nodes as well as their distance.

For fatigue analysis the relative stress gradient is used which is independent of the loading level

Stress Gradient

$$\chi = \frac{d\sigma}{dx}$$

Relative Stress Gradient

Introduction in Four Questions (3/4)

Why is the gradient such an important influence factor?

The locations of stress concentrations are critical to fatigue life.

The gradient has an influence on the component S/N curve and therefore on all fatigue results.

Therefore, you want to compute the stress gradient as accurate as possible.

Date: May 2021 / Author: Gerhard Spindelberger

Introduction in Four Questions (4/4)

Why is there a new method, what does it make better than the default gradient?

- A complex shaped structure is usually meshed automatically with parabolic tetrahedrons
- FEMFAT calculates the stress gradient along Finite Element edges
- The maximum stress gradient is usually perpendicular to the surface
- But often there are no Finite
 Element edges perpendicular to
 the surface
 - \rightarrow inaccurate results!

New Gradient Method

MAGNA

A stress gradient is a vector pointing in the direction of the largest stress decrease.

It can be reconstructed by its components along the Finite Element edges.

The new option "Vector Reconstruction" can be activated from the "Influence Factors" menu. "FEMFAT 2.4" method is still the default setting.

Only Finite Element edges with decreasing stresses are considered for gradient reconstruction, because there is no support effect for bulges ("negative" notches).

Different Handling for Middle Nodes of parabolic Elements

MAGNA

With activated "Vector Reconstruction" the gradients at middle nodes of parabolic elements are calculated directly, i.e. like corner nodes.

For the default setting "FEMFAT 2.4" the gradients at middle nodes are computed from the averaged gradients of the adjacent corner nodes.

Special Aspects in ChannelMAX

Date: May 2021 / Author: Gerhard Spindelberger

ChannelMAX Gradient Analysis Old Method ("FEMFAT 2.4")

MAGNA

ChannelMAX Gradient Analysis New Method ("Vector Reconstruction")

MAGNA

Consequences of the "Vector Reconstruction" in ChannelMAX

- Usage of superimposed stresses <u>before</u> gradient computation & cutting plane analysis ensures the invariance of the Stress Gradient with respect to the analysis type (inertia relief or statically determined boundary conditions)
- Equivalent method to TransMAX and therefore identical results for identical loading.

• "Vector Reconstruction reduced" for an accelerated analysis with less time steps considered for superposition, but mostly same accuracy.

"Vector Reconstruction reduced" for accelerated Gradient Computation

A MAGNA

The "Vector Reconstruction reduced" method takes only the maximum and minimum points in time of the load history records into account (i.e. a maximum of 2x number of channels).

Comparison of Methods

Correlation between Accuracy and Type of Result

As a derived quantity (from displacements), stress is always less precise!

MAGNA

Refinement FE mesh

First Example: Hyperbolic Notch

We consider a specimen with hyperbolic notch under tensile loading for which analytical expressions for the stresses* are available. The focus is on the comparison of the different gradient methods in FEMFAT for several discretization levels.

*Neuber H.: Kerbspannungslehre, 2. Auflage, Springer Verlag, Berlin / Göttingen / Heidelberg, 1958

Date: May 2021 / Author: Gerhard Spindelberger

Convergence Study

MAGNA

Gradient Comparison for Coarse Model

MAGNA

Comparison for Fine Model

Comparison for Extra Fine Model

MAGNA

[©] MPT Engineering / Disclosure or duplication without consent is prohibited

Case Study

Task:

We consider a control arm modeled from shell elements. In FEA we analyse a total of 18 unit load cases (i.e. 6 for each interface node).

The subsequent fatigue analyses are carried out in ChannelMAX using random load histories for each channel.

The focus is on the comparison of damage results for different gradient methods (default "FEMFAT 2.4" and "Vector Reconstruction" resp.)

Å MAGNA

Since in ChannelMAX the gradient is now calculated based on the superposed stress tensors, we also want to investigate the influence of the simulation method.

For this purpose, we use two different approaches in finite element analysis: Inertia Relief and Statically Determined Boundary Conditions.

Therefore we get four different fatigue analyses in ChannelMAX:

	"FEMFAT 2.4" "Vector Reconstruct	
Stat. Determined	Analysis 1	Analysis 2
Inertia Relief	Analysis 3	Analysis 4

ChannelMAX Settings

"FEMFAT 2.4"

	l	nf	luer	ıce	Fac	tors
--	---	----	------	-----	-----	------

General Factors Surface Treatment WELD SPOT LAMINATE			
Stress Gradient			
Gradient Computation Method		FEMFAT 2.4	\sim
🗹 Endurance Limit 🛛 🗹 Slope / Cycle Limit		FEMFAT 2.4	~
Mana Ohman			
Mean Stress		[
Endurance Limit		FEMFAT 4.1	~
Slope / Cycle Limit		FEMFAT 5.1	\sim
		EKM / JABG (Rz)	
	DIACT		_
Mean (and Amplitude) Stress Rearrangement	PLAST	Mean: Without Sequence Influence	
Modified Haigh Diagram (Ultimate Tensile Strength)		Stress Gradient Influence	~
Technological Size Influence		FKM-Guideline	\sim
Statistical Influence		Gauss (LogN)	\sim
Isothermal Temperature Influence		FEMFAT 4.6	\sim
Cast Microstructure			
Effective Plastic Strain		Method of Variable Slopes	\sim
Tempering Influence (for Tempering Steel only)			
Surface Residual Stresses			
Boundary Layer			
Fiber Orientation		Logarithmic interpolation	\sim
Local Material Properties			
Rotating Principal Stresses Influence		FEMFAT 4.2	\sim
Combination Method Influence Factors		FEMFAT 5.1	\sim

"Vector Reconstruction"

Influence Factors		
General Factors Surface Treatment WELD SPOT LAMINATE		
Stress Gradient		
Gradient Computation Method	Vector Reconstruction	\sim
🗹 Endurance Limit 🛛 🗹 Slope / Cycle Limit	FEMFAT 2.4	~
Mean Stress		
Endurance Limit	FEMFAT 4.1	~
Slope / Cycle Limit	FEMFAT 5.1	~
Surface Roughness	FKM / IABG (Rz)	~
☑ Mean (and Amplitude) Stress Rearrangement PLAS	Mean: Without Sequence Influence	~
🗹 Modified Haigh Diagram (Ultimate Tensile Strength)	Stress Gradient Influence	~
Technological Size Influence	FKM-Guideline	\sim
Statistical Influence	Gauss (LogN)	\sim
Isothermal Temperature Influence	FEMFAT 4.6	\sim
Cast Microstructure		
Effective Plastic Strain	Method of Variable Slopes	\sim
Tempering Influence (for Tempering Steel only) Surface Residual Stresses		
Boundary Layer		
Fiber Orientation	Logarithmic interpolation	\sim
Local Material Properties		
Rotating Principal Stresses Influence	FEMFAT 4.2	\sim
Combination Method Influence Factors	FEMFAT 5.1	~

Date: May 2021 / Author: Gerhard Spindelberger

Results Comparison for Different Gradient Methods

Date: May 2021 / Author: Gerhard Spindelberger

Damage Results

"FEMFAT 2.4"

Damage Results

"Vector Reconstruction"

Damage Discrepancy Δ_{Damage}

Results Comparison for FEA Simulation Methods

Date: May 2021 / Author: Gerhard Spindelberger

Damage Discrepancy Δ_{Damage}

Date: May 2021 / Author: Gerhard Spindelberger

Results Node 1 (max. Damage)

"FEMFAT 2.4"

Detailed Local Results

Statically Inertia Relief Determined Damage [-] 0.1672 0.248 **Rel. Stress** 0.0677 0.048 Gradient [1/mm] Stress Ampl. 835.1 835.1 [MPa] Mean Stress 5.32 5.32 [MPa] Local Fatigue 290.9 288.7 Limit [MPa] Local Slope [-] 10.96 11.31 Local Cycle 1.903E06 1.935E06 Limit [-]

Date: May 2021 / Author: Gerhard Spindelberger

Results Node 2 (max. Gradient)

"FEMFAT 2.4"

	Inertia Relief	Statically Determined
Damage [-]	1.566E-13	5.074E-13
Rel. Stress Gradient [1/mm]	2.616	5.455
Stress Ampl. [MPa]	14.27	14.08
Mean Stress [MPa]	0.46	0.46
Local Fatigue Limit [MPa]	383.4	440.8
Local Slope [-]	3.34	3.095
Local Cycle Limit [-]	5.757E05	5.029E05

Detailed Local Results

Damage Discrepancy Δ_{Damage}

"Vector Reconstruction"

MAGNA

Results Node 1 (max. Damage) "Vector Reconstruction"

Detailed Local Results

Date: May 2021 / Author: Gerhard Spindelberger

Results Node 2 (max. Gradient) "Vector Reconstruction"

Inertia Statically Relief Determined Damage [-] 4.82E-13 4.83E-13 **Rel. Stress** 7.51 7.51 Gradient [1/mm] Stress Ampl. 14.05 14.03 [MPa] Mean Stress 0.67 0.72 [MPa] Local Fatigue 474.7 474.7 Limit [MPa] Local Slope [-] 3.055 3.055 Local Cycle 4.906E05 4.906E05 Limit [-]

Detailed Local Results

Date: May 2021 / Author: Gerhard Spindelberger

Control Arm example, single CPU run:

Analysis Duration	"Vector Reconstruction"	Method "FEMFAT 2.4"	"Vector Reconstr. Reduced"
Inertia Relief	650 sec	489 sec	477 sec
Statically Determined	561 sec	431 dec	429 sec

The ratio seen here also applies in general: the "Vector Reconstruction" method leads to approximately 30% longer analysis running time.

Summary

Summary

MAGNA

- As of FEMFAT 5.4.2 a completely new method for relative stress gradient calculation ("Vector Reconstruction") is available.
- The new method can be used in all modules with gradient computation (BASIC, MAX, SPECTRAL).
- Big advantage: identification of max. gradient, unified method for all modules, invariant for different simulation techniques (Inertia Relief or Statically Determined Boundary conditions).
- Two additional aspects for ChannelMAX:
 - Gradient is computed on basis of superimposed stress tensors (analoguous to TransMAX)
 - third method "Vector Reconstruction Reduced" for improved performance

DRIVING EXCELLENCE. INSPIRING INNOVATION.

Date: May 2021 / Author: Gerhard Spindelberger