

Newcomer Workshop

FEMFAT User Meeting 2021 18th May 2021 / Manuel Frank FEMFAT Support **Overview**

- 1. FEMFAT Software
- 2. Analysis in Time Domain
 - FEMFAT basic
 - FEMFAT max
- 3. Analysis in Frequency Domain
 - FEMFAT spectral
- 4. Joint Assessment in FEMFAT
 - FEMFAT weld
 - FEMFAT spot
 - Assessment Method for Adhesive Joints
- 5. Non-metal Fatigue
 - Assessment Method for Short Fiber Reinforced Plastics
 - FEMFAT laminate

FEMFAT Software

May 2021 / FEMFAT Support

Software Products by Magna Powertrain

Å MAGNA

KULI

Finite Element Method Fatigue Signal Processing for Fatigue Lab and Simulation Simulation of Joint Contact Phenomena

Acoustic Simulation Postprocessor Energy Management Optimization Depending on the stress state, joining technique or analysis target different FEMFAT modules are used for analysis.

MAGNA

FEMFAT modules

May 2021 / FEMFAT Support

Analysis Concept

May 2021 / FEMFAT Support

The exclusive analysis of stress in a traditional way doesn't often reveal damage occurrence at the right point

Only modern fatigue analysis tools are capable of predicting critical crack locations and the number of load cycles until failure

May 2021 / FEMFAT Support

S/N curve from the specimen is transformed depending on different influence factors

Local Stress Concept in FEMFAT Stress Tensors Amplitude **Material Properties** S/N₁ modified by **FEMFAT** Stress Gradient Mean Stress Influence Stress , MultiAXial Load Technological Influences Size Influence S/N material Temperature Influence from specimen tests **PLAST**ic Deformations Load Cycles **SPOT** Joints Anisotropical Behaviour of Arc WELDs etc.

For each node of the FE-model a synthetic S/N curve is defined depending on local temperature, surface roughness, stress gradient, ...

Data Processing

May 2021 / FEMFAT Support

The menu items in the GUI are processed from top to bottom to create a new job.

May 2021 / FEMFAT Support

Data Processing in FEMFAT

May 2021 / FEMFAT Support

Groups can either be previously defined in the finite element application and be imported with FEM data or they can be created directly in FEMFAT

MAGNA

Group-handling in FEMFAT

Create a group for a PID

E FEMFAT 5.4 - subframe*		- 0	×
File View Analysis Options	Templates Help		
🔿 🔒 🖆 🖪 📓 🕻	👔 📝 📲 Current Working Directory: C:/femfat_workdir/04_WELD	FEMFA	١
BASIC	Groups		
FE Entities	Manage Groups		
Eroups	7 - PART 14 Group Filter:		
🛴 Stress Data	4 - ST52		
Material Data	6-PART 13 VISU		
Load Spectra	7 - PART 14 7 - PART 14		
* Node Characteristics	Number of Nodes: 0		
S Influence Factors			
Strain Gage Data	List 🔲 Export 🗡 Delete		
Analysis Parameters	Rename Complete		
Cutput			
Report	Create/Modify Crown Entries		
Analyze	Nades Nades Based en Elements		
Visualization	Nodes Nodes Based on Elements		
-			
BASIC			
ChannelMAX			
TransMAX	O Related to Node Label: 0 to 0		
HEAT Sehitoglu	O Related to Nodes in Group: 7 to 7 New	3	
SPECTRAL			
	Physical Property Table: 14 to 14		
SPO I Remeshing	C Element Type: 3N Triangle Linear C Remove		
STRAIN Calc			
Results Manager			
			_

Material Data

May 2021 / FEMFAT Support

There are two possible ways to define a material in FEMFAT. Read it from the material database or define a material using material generator

MAGNA

Defining a material

The creation of a new material requires the definition of a material class and certain material parameters in tension. Check diagrams after definition

Defining a material using stress data

- Click Stress Controlling with FKM Standard
- 2 Click New
- 3 Name it "USER_Stress". Confirm with OK
- 4 Change material class to "Heat Treatable Steels"
- 5 Enter UTS. Enter YS and observe the change. Confirm with OK

Influence Factors

May 2021 / FEMFAT Support

Cycle limit, endurance limit and slope define S/N curve. S/N curve can be continued after cycle limit in three ways

Å MAGNA

S/N curve – Influenced Parameter

Influence factors

Influences	Endurance stress limit	Slope	Endurance cycle limit
Notch influence (by relative stress gradient)	•	•	•
Mean stress influence	•	•	•
Influence of surface roughness	•	•	•
Technological parameter influence	•	-	-
Tempering condition	•	-	-
Technological surface treatment	•	-	-
- Shot peening	•	-	-
- Rolling	•	-	-
- Carburizing	•	-	-
- Nitriding	•	-	-
- Carbonitriding	•	-	-
 Induction hardening 	•	-	-
- Flame hardening	•	-	-
 General surface factor 	•	-	-
Temperature influence	•	-	-
Statistical influence	•	-	-
Forging influence (technological factor)	•	•	•
Cast microstructure	•	-	-

The locally considered S/N curve results from the superimposed modification of all influences activated for the analysis.

Synthetic S/N curve

Test 1 and Test 2 have the same v. Mises equivalent stress for mean stress and amplitude stress but they evoke different damage in the specimen.

Mean stress influence

S/N curve is transformed due to mean stress at node. Stress amplitude is not taken into account for the modification

- A stress state is defined by its mean and amplitude stress
- 2 Determine endurance limit σ_{ALT,S_m} for this given point
- 3 Take endurance limit at zero mean stress for influence factor f_m

Modification of Fatigue Stress due to mean stress by the factor

MAGNA

Haigh diagram is differently modified in tension and compression dependent on the stress gradient. The modification is limited to the particular factor

MAGNA

Modified Haigh diagram

Modification of Haigh diagram:

- Increase of the UTS due to support effect in notches
- Different for tensile and compression stress

The standards use different roughness values (R_t for IABG/ R_t for FKM and TGL). If a material class is not covered in a standard, the influence is not considered.

Å MAGNA

Surface Roughness

FKM takes the Average Surface Roughness R_z

Implemented Standards:

The different strengths of materials as a function of the effective diameter of semis, the type of material and the technological treatment are considered

Å MAGNA

Technological Size at 3D Nodes

FEMFAT determines the technological parameter influence factor on the basis of the **FKM** guideline. This takes into consideration the differing strengths of materials as a function of the effective diameter of the semis or the unfinished castings, the type of material and the technological treatment, e.g. tempering.

Thickness results from adjacent shell elements

Thickness must be defined by node characteristic

The wall thickness defined here applies only to nodes on 3D elements. For shell element nodes, the wall thickness is determined by the average thickness of adjacent shell elements.

Component S/N curve is considered to follow a log-normal distribution. S/N curve is modified according to the demanded survival probability.

Statistical Influence

Range of Dispersion is used to transform the S/N curve to the desired survival probability.

Isothermal Temperature Influence

Implemented Methods:

FKM	If the influence is solely considered using FKM guideline endurance limit of S/N curve is modified by the fatigue influence factor.
FEMFAT 4.5	The S/N curve and the Haigh diagram are modified. Modification of the static and cyclic material parameters is carried out acc. to FKM.
User Defined	User defined temperature dependent material data. The S/N curve, Haigh diagram, cyclic stabilized σ - ε curve, support factor (= stress gradient influence factor) and the equivalent stress are modified.
FEMFAT 4.6	The S/N curve, Haigh diagram, cyclic σ - ε curve are modified. Modification of the static and cyclic parameters acc. to FKM. The cyclic coefficient of hardening K' is modified proportional to the tensile strength (acc. to UML). The cyclic hardening exponent n' is not altered.

The surface treatment influence is only considered as far as the endurance fatigue limit is concerned.

Process Influence Surface Treatment

Considered acc. to **FKM** guideline by modifying the endurance limit.

MAGNA

During the FEMFAT Standard Training, all the Influence Factors are explained in detail. It is also discussed how non-linear FE stresses can be considered.

Process Influence

Microstructure Parameter

• Effective Plastic Strain

Boundary Layer Analysis Model

- Tempering Condition
- Surface Residual Stress

. . .

FEMFAT plast

May 2021 / FEMFAT Support

NEUBER correction using NEUBER hyperbola works well in small highly stressed areas.

After NEUBER correction of upper and lower stress FEMFAT modifies the mean stress but uses the original amplitude to remain conservative.

Critical Plane and Stress Computation

May 2021 / FEMFAT Support
Depending on the cutting plane (φ , γ) the equivalent stresses are calculated for middle stress and amplitude stress. Haigh diagram is used for evaluation.

Cutting plane criterion (1/3)

Current Cutting Plane depending on φ and γ

For every single evaluated cutting plane a criterion is applied to find the most critical point in the Haigh diagram.

MAGNA

Cutting plane criterion (2/3)

HAIGH diagram and loading points are calculated for all cutting planes

Criteria ($\sigma_m = const$) for critical loading point:

$$\frac{\sigma_{a endu}}{\sigma_{a e crit}} \to \text{Min}$$

For each loading point an evaluation is conducted depending on a specific criterion. The most critical cutting plane is found by the critical loading point.

Å MAGNA

Analysis Target

May 2021 / FEMFAT Support

For each entry in the rainflow matrix a S/N curve is derived and a damage increment is calculated. All increments are summed up to a total damage value.

Å MAGNA

Endurance safety factor SF_A is calculated with respect to the ultimate cycle limit and the stress amplitude . Safety factor SF_B is related to the upper stress.

Endurance Safety Factor

FEMFAT visualizer

May 2021 / FEMFAT Support

A fast 3D post processor for displaying the structure of FEM models, definition of weld seams and for viewing fatigue results and FEA stresses.

FEMFAT visualizer – Displaying FE Entities and Results

MAGNA

May 2021 / FEMFAT Support

In case you need detailed information about a node for your report it's possible to add a subwindow with detailed information.

FEMFAT visualizer – Detailed node information and preferences

May 2021 / FEMFAT Support

Analyses in Time Domain

FEMFAT max is used when loading is complex and direction of principal stresses are permanently changing.

Which module to use?

Module	When to use	Examples	What to Import
BASIC	 Direction of principle stresses are constant 2 load conditions max. one constant loading 	 Conrod with dominating load cases ignition and inertial force Engine bulkhead and bearing cap (assembly and ignition) Shafts with torque history Matrix of combinations (railway) 	 Two stress results, which can be: Upper and lower stress or Amplitude and mean stress Load spectra for damage analysis
CHANNEL MAX	 Direction of principle stresses may change permanently Direction and location of forces and boundary conditions are constant Existing load histories Multiple channels which are generally not in phase 	 Chassis parts like: Knuckles, subframes, H-Arms, Body in White Crankshaft with modal approach 	 One stress result for each channel (e.g. for unit load) One load history for each channel Modal stresses from CMS and modal coordinates from MBS
TRANS MAX	 Load application point and/or boundary conditions are altering with time Transient sequence of stress results 	 Engine bulkhead and bearing cap or crankshaft with stress result each n° crankangle safety factor from 2 of n loading conditions 	 Sequence of stress results

FEMFAT basic

May 2021 / FEMFAT Support

FEMFAT basic is used when the load consists of only 2 load conditions, which may include an optional constant load.

MAGNA

Load Spectra for damage analysis are made by scaling mean stress and stress amplitudes. Thus, the Rainflow matrix can be constructed.

May 2021 / FEMFAT Support

In order to calculate the gradient a minimum number of nodes around the node of interest needs to be taken into consideration

Relative Stress Gradient (1/2)

The influence of the relative stress gradient on the endurance limit is determined by experiments at different relative stress gradients and notches

Relative Stress Gradient (2/2)

MAGNA

BASIC – Example

May 2021 / FEMFAT Support

In this example a damage analysis of a connecting rod is performed. Loading is characterized by three different load cases.

Conrod: Uniaxial analysis based on load spectra

Materials that are not included in the FEMFAT database (> 450 materials) can be requested from FEMFAT support or generated by the material generator.

Material Data

Material 42CrMo4:

Heat Treatable (Tempered) Steel

 $UTS = 1100 \text{N/mm}^2$

 $YTS = 900 \text{N/mm}^2$

Select Material Class:					
Material Parameters	pered) Steel	S	~		_
material analieters	Tension	Pressure	Bending	Shear	
Ultimate Strength	1100.0	1100.0	1292.5	635.1	
Yield Strength	900.0	900.0	1065.6	519.6	
Pulsating Strength	770.5	0.0	905.3	490.9	
Alternating Strength	495.0	495.0	526.6	285.8	
Info					-
Also these parameter rupture A5, cyclic hard n', slope of S-N curve thickness of specime	rs are define dening coeffi , cycle limit o en, roughnes	d: Young's m cient K', cycli f endurance, s of specime	nodulus, elon c hardening e , survival prob en, temperatu	gation at exponent ability, re of	

May 2021 / FEMFAT Support

For an endurance safety factor analysis, the load spectrum is not considered!

Load Spectra

Operate Load Spectrum 1 - Load Spectra 1 - Load Spectra	Coad Spectra Type ● General ○ Synthetic ○ Rainflow □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Diagrams
Name of Measure Object: Designation of Measure Section: Channel Designation:	Load Spectra	
Unit of Channel: Total Number of Steps:		
	Step N FactAmpl 1 1 1.0000	Fact.Mean 1.0000

If your stress results come from a nonlinear FE calculation you must turn off the Mean Stress Rearrangement!

Node Characteristics & Influence Factors

Assign to Group 'ALL':

Material:	1 - 42CrMo4 User 🗸 🗸		
Surface Roughness:	Smoothed (= 60 μ m) \sim	60.000	[µm]

Assign to Group 'hardening':

Material:	1 - 42CrMo4 User	~	
Surface Roughness:	Polished (= 2µm)	~	2.000 [µm]
Surface Treatment			

Inductive Hardening ~	
General Surface Treatment Factor:	1.000
Forge Influence Factor:	1.000

Activate Influence Factors:

☑ Surface Roughness	FKM / IABG (Rz) V	
☑ Constant Stresses	FEMFAT 2.0 V	
Inductive Hardening	FKM ~	

Influences on fatigue strength:

- Inductive Hardening
- Surface Roughness $R_z = 2\mu m$ (polished)

acc. to FKM

The FEMFAT visualizer is a post-processor for displaying analysis results. In addition, the welds and groups used in the analysis can be defined here.

Å MAGNA

Output & Visualization

Output of Influence Factors:

Main Results (7)	Stress (5)	General Factors1 (1)	General Factors2 (0)	Surface (1)	Misc. (0)	Node Charact. (0)					
 Influence Factors on Fatigue Limit Stress Gradient Influence on Fatigue Limit Mean Stress Influence on Fatigue Limit Surface Roughness Influence 											
Main Results (7)	Main Results Stress General Factors1 General Factors2 Surface Misc. Node Charact. (7) (5) (3) (3) (1) (0) (0)										
Surface Treatment Shot Peen Cold Rolling Carburize Nitride Inductive Hardening Flame Hardening Forge General Surface Treatment											

FEMFAT max

May 2021 / FEMFAT Support

FEMFAT max is used when loading is complex, and the directions of principal stresses are permanently changing.

FEMFAT max for Multiaxial Loading

TimeStress tensorsteps:at FE node:

 $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}_{0}$ 0 [1 $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}_{1}$... $\begin{pmatrix} \sigma_{\chi\chi} & \sigma_{\chiy} & \sigma_{\chiz} \\ \sigma_{\chi\chi} & \sigma_{\chiy} & \sigma_{\chiz} \\ \sigma_{\chi\chi} & \sigma_{\chi\chi} & \sigma_{\chi\chi} \end{pmatrix}$ *m* -

Planar stress:

The number of time steps in the load history corresponds to the points in the 3D stress space (σ_{xx} , σ_{yy} , σ_{xy}).

Multiaxial loads:

- are composed of at least 3 time points and
- are characterized by the fact that the points do not lie on a straight line in the 3D stress space.

FEMFAT max transforms the stresses of the stress history into several planes and repeats the procedure until the maximum damaging plane is found.

Å MAGNA

Criterion of critical cutting plane in FEMFAT max

- Transformation of all stress tensors into several planes with normal vector n
- 2) Filtering of interesting planes
- 3) Generation of the load histories of the stress components
- 4) Rainflow counting in all selected planes
- 5) Stress Rearrangement (FEMFAT plast)
- 6) Damage analysis (Influence Parameter Method)
- 7) The cutting plane with maximum damage is assumed to be the critical plane for fatigue failure

Rainflow counting is a two-parameter procedure. The full stress history must be reflected in the rainflow matrix by counting the closed hysteresis.

In FEMFAT basic a Load Spectra is used. In FEMFAT max, the local stress history is Rainflow counted, whereby two methods are available.

Rainflow counting methods in FEMFAT max

method 5.0 Results in closed & open hysteresis. (= residuals). method 5.1 Results in closed hysteresis only. Default

channelMAX

May 2021 / FEMFAT Support

Channel based modeling requires the definition of unit loadcases for each loading direction.

Å MAGNA

In five steps a weighted stress gradient is calculated over all channels. The weighting factor is the maximum stress amplitude per channel.

MAGNA

Average Relative Stress Gradient 5 Finding maximum Gradient calculated Calculation Calculation Imported stress for each channel in in each force of weightening of weighted distribution each node stress-gradient history factor Channel 1 σ_1 $\sigma_{max1} =$ ⇒ χ'₁ A_{max1}·σ_{Mises1} A_{max1} Channel 2 σ_2 $\sum \sigma_{\max i} \cdot \chi'_i$ $\sigma_{max2} =$ $\Rightarrow \chi'_2$ A_{max2}·σ_{Mises2} $\overline{\chi}' = \frac{\overline{\lambda}}{1-1}$ Channel N N...Number of σ_{N} $\sigma_{maxN} =$ channels ⇒ χ'_N A_{maxN}·σ_{MisesN}

May 2021 / FEMFAT Support

Data reduction by compressing the load history is possible. It's possible to omit intermediate points or small partial cycles.

Compression of load-time histories

Disregarding

In this case all three load histories are equivalent

Neglect small cycles ⇒ smoothing

- Disregarding small cycles (multiaxial scanning)
- Weighting of loading histories according stress level!

Each time no channel has a peak points are omitted. As soon as one single channel has a peak, the point is taken into consideration.

Compression of load-time histories - Disregarding intermediate points

MAGNA

channelMAX – Example

May 2021 / FEMFAT Support

In this example, a multiaxial fatigue analysis is performed for a drive shaft. The unit load cases are combined with the corresponding load histories.

Drive Shaft: Multiaxial analysis based on unit loads & load-time histories

Channels

Chann	el Definition												
Numbe	er of Channels:	2 🔨	Impo	rt	Export	€→ Delete All	Auto Fill And	hor .abel:	0	🗌 Last			
Currer	t Channel:	2	⊷ √ Vie	w Channel	History	🗡 Delete	Stress Form Data Location Read Nodal	at Specific n: At Nod Force: 🗌	c Options es on Ele for WELE	ement) SSZ	~		
LbI	Format	Stress File	LC	Factor	L.HIST	Load His	tory File	Row	Col	Scratch File		٦	
1	OP2 NAS	ta/result_bending.op2	1	1.00000	RPC ASCII	ta/history_R	PC_ASCII.rpc	1	1	driveshaft_1.fss			Channel Definition
2	OP2 NAS	ata/result_torsion.op2	1	1.00000	RPC ASCII	ta/history_R	PC_ASCII.rpc	1	2	driveshaft_2.fss			Chamler Demitter
							_					_	

To save memory, detailed results are usually only exported for critical areas. For this purpose, an Analysis Group named 'DETAILED RESULTS' is defined.

Visualization & Detailed Results Group

The detailed result output can be defined in the module-specific output menu. CSV and RPC binary format is also available.

transMAX

May 2021 / FEMFAT Support

A sequence of stress results must be defined for transient analyses. Applications are alternating loads or non-linearities (material, geometry, temperature).

Data processing in transMAX Stresses at time Load Case Time Stress tensor at FE node: steps: Time Step 1 0° $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}_{0} \quad \leftarrow$ 0 Time Step 2 $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}_{1} \quad \leftarrow$ 90° 1 ... Time Step m 270° $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}_{m} \leftarrow$ m

MAGNA

FEMFAT searches the extreme principal stresses. The maximum difference is relevant for relative stress gradient.

transMAX – Example

May 2021 / FEMFAT Support

The transient stress states of the rotating load are used in transMAX for an endurance safety analysis.

MAGNA

Bulkhead & Bearing Cap: Multiaxial analysis of transient stress states

Time Steps

-Time Step	Definition					
	(T) (1)	Auto Fill Anchor	Auto Fill Anchor			
Number o	f Time Steps:	24 mport Export Delete All	Last			
		Stress Format Specific Options				
		Data Location: At Nodes on Elem	ent ~			
Current Ti	ime Step:	1 Delete				
Lbl	File Format	Stress File	Load Case			
1	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	1			
2	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	2			
3	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	3			
4	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	4			
5	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	5			
6	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	6			
7	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	7			
8	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	8			
9	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	9			
10	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	10			
11	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	11			
12	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	12			
13	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	13			
14	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	14			
15	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	15			
16	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	16			
17	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	17			
18	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	18			
19	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	19			
20	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	20			
21	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	21			
22	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	22			
23	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	23			
24	MS-UNVI_DEAS	C:/FEMFAT/workshop/03_transMAX/data/bearing-FE+Result_24-Steps.unv	24			

Time Step Definition

The scratch files are created for the current analysis group. Enlarging the analysis group after the scratch file has been created leads to errors. Reducing is possible. A MAGNA

Scratch & Animation of Stresses

Various charts (S/N curve, Stress History, ...) can also be displayed directly in the FEMFAT GUI in the Visualization menu after the calculation.

MAGNA

Analysis Target, Charts & Visualization

Fatigue Analysis by Modal Stresses in channelMAX

May 2021 / FEMFAT Support

MBS + channelMAX

May 2021 / FEMFAT Support

FEMFAT ChannelMAX provides the possibility of performing parallel integration of FEM and MBS and operational strength analyses.

Hybrid Models - FE + MBS + channelMAX

May 2021 / FEMFAT Support

HARMONIC + channelMAX

May 2021 / FEMFAT Support

Å MAGNA

Modal coordinates:

HARMONIC + channelMAX

FEA: NASTRAN, ABAQUS, ANSYS, PERMAS

HARMONIC uses transfer functions to compute a dynamic system's response in terms of modal coordinates.

Analyses in Frequency Domain FEMFAT spectral

May 2021 / FEMFAT Support

Simulations in time domain with long time signals (typically necessary for random loading) lead to very high computational effort.

Analysis is performed in the frequency domain using Fourier Transformation, where the loads are defined as power spectral densities (PSDs).

Frequency Domain – Fourier Transformation

Power Spectral Density (PSD) = Square of Fourier Transformed Signal = Mean Value of "Power of the signal" Small displacements and linear elastic material behaviour can be approximated with sufficient accuracy by a linear relationship.

Linear Time-Invariant (LTI) Systems

Output-Signal = Superposition **Response-Functions**

h(t) ... Impulse - Response (System - Property)

u(t) = h(t) * f(t)

 ∞

Fourier-transformation: Convolution in time-domain => Multiplication in frequency-domain

 $U(\omega) = H(\omega)F(\omega)$

System

Advantage: Simple multiplication in frequency-domain

f(t)

In time domain rainflow counting is done for each cutting plane and S/N curve is displayed for the most damaged rainflow entry on the cutting plane.

Analysis Technique in Time Domain

MAGNA

For each associated equivalent stress PSD (result from application of cutting plane method) a stochastic rainflow matrix is estimated for damage calculation.

Å MAGNA

Analysis Technique in Frequency Domain

Computation time acceleration compared to time domain analysis is a factor of about 140 !!!

Brake Disc Cover

with courtesy of BMW

Analysis in time domain with channelMAX:

1.2 million time points

Analysis in frequency domain with SPECTRAL:

- 2000 spectral lines
- from 0 to 500 Hz

Joints and short fiber reinforced plastics can be analyzed. Future Developments are methods for the assessment of mixed signals (stochastic + deterministic).

Summary and Outlook

Advantages:

- Fast method (structural analysis, fatigue analysis)
- Load-case superposition in FEMFAT (very flexible)
- Simple combination of different load situations
- Simple simulation chain (no multi-body simulation, reverse FFT not required)

Disadvantages:

- Linear elastic behavior assumed/required (superposition)
- Not suitable for deterministic loads

Conclusion:

 FEMFAT spectral is a reliable and effective tool for damage analysis of multi-axially stochastically loaded systems.

Joint Assessment in FEMFAT

FEMFAT weld Fatigue Assessment of Welds

May 2021 / FEMFAT Support

MAGNA

FEMFAT modelling guideline for...

Finite Element Modelling acc. to Modelling Guideline

2D shell elements

The joint sheets are also simply represented as shell elements, independent of the joint and weld type. The detailed geometry of the welds is not modeled.

2D & 3D elements

Modeling of welds in which shell elements are welded to solid elements is analogous to pure shell welds. Stresses in the solid element are not considered for analysis.

3D elements

In the current FEMFAT weld version there are no specific modeling guidelines for welds made up of solid elements only. In some cases it can be useful to deactivate consideration of the relative stress gradient influence in the notch bases of 3D welds. Node color C200 (or group name C200) can be used to switch off the influence automatically for the respective nodes.

Solid Weld

With this method, which is currently only available for ChannelMAX, the weld roots and toes are analyzed based on a relatively coarse volume mesh with no rounding radiuses by means of stress interpolation method. Stresses are compared to a master S/N curve which is based on many tests.

WELD

May 2021 / FEMFAT Support

Creating a weld seam mesh with the help of the Modelling Guideline and your preprocessor

The finished definition includes all parameter (for every node and element) for the weld

The Modelling Guideline includes all necessary information about the weld seam which are needed to define the weld for the FEMFAT analysis with the Pre-processor. FEMFAT visualizer uses this information automatically when defining the weld seams. There are different guidelines and weld databases provided for common standards as EUROCODE, BS,....

MAGNA

Choice of 2 Methods

Stress based

Advantages

- Support of many welding seam types
- Special notch factors for welding seam start/end nodes available
- Consideration of normal stress perpendicular to welding seam, normal stress parallel to welding seam and shear stress

Disadvantages

- No weld geometry parameters considered
- Continuous transition between T-joint and overlap joint must be divided

Advantages

Force based

- Less sensitive to mesh quality
- Takes into account weld geometry parameters
- Continuous transition between T-joint and overlap joint

Disadvantages

- Support of 4 welding seam types
- Welding seam start/end nodes are treated like weld middle nodes
- Consideration only of normal stress perpendicular to welding seam

Å MAGNA

Analysis in FEMFAT weld – stress based

Based on the stresses a damage or safety factor is calculated for every direction. Then a total result is generated on the base of the formula which is based on the DVS 1608. The weld start-

and end- results are calculated additionally.

• Equivalent Strain Energy Hypothesis using DVS 1608 (standard)

$$a_{\nu} = \sqrt{a_{\perp}^2 + a_{\parallel}^2 + f \cdot a_{\perp} \cdot a_{\parallel} + a_{\tau}^2}$$

$$\rightarrow$$
 $D_v = a_v^{k_{eff}}$

 $\frac{1}{S} = \sqrt{\left(\frac{1}{S_{\perp}}\right)^2 + \left(\frac{1}{S_{\parallel}}\right)^2 + f \cdot \left(\frac{1}{S_{\perp} \cdot S_{\parallel}}\right) + \left(\frac{1}{S_{\tau}}\right)^2}$

aUtilization degree
D_{ν} Equivalent damage
$k_{e\!f\!f}$ weighted averaged slope of S/N curve
SSafety factor
f weighting factor for multiaxility (-1 $\leq f \leq$ +1

• Weld Start and End Nodes using HAIBACH (assessment of stress components individually)

$\frac{\sigma_{a,Equiv.}}{\sigma_{A,Equiv.}} = MAX \left(\frac{\sigma_{a,\perp}}{\sigma_{A,\perp}} ; \frac{\sigma_{a,\parallel}}{\sigma_{A,\parallel}} ; \frac{\tau_a}{\tau_A} \right)$		$\frac{1}{S} = MAX$	$\left(\frac{1}{S_{\perp}}\right)$	$\frac{1}{S_{\parallel}}$	$\frac{1}{S_{\tau}}$
--	--	---------------------	------------------------------------	---------------------------	----------------------

- σ_a ...Stress amplitude of the load
- σ_A ...Admissible stress amplitude (from S/N curve)
- S... Safety factor

C

0

Weld start/end is analyzed twice:

Position code (analysis output)

May 2021 / FEMFAT Support

EWUTOP	Weld start/end notch 1, root, shell top
EWUBOT	Weld start/end notch 1, root, shell bottom
EUETOP	Weld start/end notch 1, toe, shell top
EUEBOT	Weld start/end notch 1, toe, shell top
NWUTOP	Weld start/end notch 2, root, shell top
NWUBOT	Weld start/end notch 2, root, shell bottom
NUETOP	Weld start/end notch 2, toe, shell top
NUEBOT	Weld start/end notch 2, toe, shell bottom

- 1.) Analysis as weld middle node
 - Automatic stress correction in direction 2 and 2^c resp.
- Notch factors and SN curves for middle nodes from weld DB are used for analysis
- 2.) Analysis as weld start/end node
 - Automatic stress correction in direction 1
- Notch factors and SN curves for start/end nodes from weld DB are used for analysis

$$\sigma_{\perp,notch} = \sigma_{\perp} \cdot \beta_{||}$$

$$\sigma_{||,notch} = \sigma_{||} \cdot \beta_{\perp}$$

MAGNA

FEMFAT WELD database

Overview of supported joint types

Polygon lines for influences on the weld fatigue limit:

- Sheet thickness
- Base material
- Temperature

Haigh Diagrams for normal and shear stress

Strength data for SolidWELD assessent:

- S/N curves for root, toe, start, end
- Interpolation distances
- Sheet thickness influence
- Base material influence
- Temperature influence
- Haigh Diagram

Notch Factors and S/N Curves

- · For weld start, end and middle nodes
- For about 50 joint types

Table for substitute element allocation

Data for force based assessment (SSZ/MSZ Method)

- Geometry parameters
- Master S/N Curve

Table with SID-ranges of the joint types

Parameters for detailed weld geometry display in VISUALIZER

Must be modifed when introducing a new joint into the database

Notch factors are determined for the relevant sheet and load-case for unity stress. The undercut from the radius of Radaj modelling leads to higher root stresses. Therefore, the notch factors must be corrected.

May 2021 / FEMFAT Support

Notch factors are assigned to different material labels acc. to modelling guideline

WELD – Sensitivity Analysis

May 2021 / FEMFAT Support

Å MAGNA

Parameter – T-Joint 90°	Better Quality (Quality class B)	Standard Quality (Quality class C)	Worse Quality (Quality class D)		
Degree of weld penetration - η	100%	50%	0%		
Seam thickness - a	1.5 t	t	0.7 t		
Seam inclination angle - α	110°	100°	90°		
Weld gap (at 3mm thickness)	0mm	0.5mm	1.5mm		

\rightarrow Determination of notch factors for weld database (total 9 databases)

May 2021 / FEMFAT Support

- Butt Joint
- Lap Joint
- T joint 90°
- T joint 45°
- Only one sided joints for steel.
- Double sided joints or aluminum welds are not supported.

Results for varying geometry parameter 'Degree of Weld Penetration'

$$F_{sens} = \frac{S_{big} - S_{small}}{S_{big}} = \frac{3.88 - 0.63}{3.88} = 0.84$$

High Sensitivity to variation in degree of weld penetration

SolidWELD

May 2021 / FEMFAT Support

MAGNA

5

Volume mesh creation

Creation of a volume meshed FE model of the weld joint. The toes and roots are not rounded in this case, but are instead angular. The FE mesh here must be refined locally in a general fashion in the vicinity of the weld toes and roots (at least three elements over the sheet thickness).

The nodes on the edges for toes and roots must be saved in groups (sets) using certain naming conventions. These sets are used in FEMFAT to identify the solid weld seam nodes that are to be analysed. Finite Element Simulation can be done with each solver that is supported by FEMFAT. It is essential to have the groups to further process the data in FEMFAT. The analysis is performed using the critical distance method, which has been modified for coarse FE meshes (element length < t/3). Analysis data, such as a master S/N curve, sheet thickness influence, assessment distances, etc., are stored in the weld database.

Creation of the MAX scratch files (*.fms) for a node group, which also contains enough nodes in the vicinity of the assessment depth for root and toe. Enable the WELD module switch. Calculation of the safety factor or the damage. It is possible to perform both base material and shellbased WELD and SPOT analyses at the same time using SOLID WELD assessment.

In cooperation with ANSA and SimLAB an automated process of modelling a welding seam was developed.

- 1. Define the connection lines between the sheets.
- 2. Define the geometry of the cross section of the seam.
- 3. The geometry of the sheets and the seam is combined to a meshable volume.
- 4. The mesh process is fully automated including the correct element size and group information for FEMFAT.

The **first analysis** is required to determine the direction of the critical cutting plane. Here, the node is analyzed as a conventional solid node with the default material data assigned to the node, however, the results are not saved.

In the **second analysis** as a SOLID WELD node, the stress is determined at a certain depth in the direction of the critical cutting plane which was determined in the first analysis.

Default values: $a_0 = 0.0 \text{ mm}$ (extrapolation onto the surface). $a_1 = 0.1 \text{ mm}$ $a_2 = 0.5 \text{ mm}$ If a_2 =0 or a_2 = a_1 , then $\sigma_{SW} = \sigma_{a1}$ (no extrapolation).

Welds with reference radius

May 2021 / FEMFAT Support

Workflow of a FEMFAT weld assessment using solid model and reference radius

Å MAGNA

Material assignment and definition of groups named C200 for nodes in the radius

476

0

8909

Grauguss, glatte

140.000 [µm]

Reference radius of r = 1 mm or r = t/10:

...material database/iron/General Structural Carbon Steel/

ASTM-50_r1ms_root_TZS_userdef_Haigh.ffd ASTM-50_r1ms_toe_TZS_userdef_Haigh.ffd

Reference radius of r = 0.05 mm:

...material_database/iron/General_Structural_Carbon_Steel/ steel r=0 05 mm TZS.ffd.ffd

May 2021 / FEMFAT Support

© MPT Engineering / Disclosure or duplication without consent is prohibited

File View Analysis Options Templates Hel

Current Working Directory: C:/Femfat_workdir

© MPT Engineering / Disclosure or duplication without consent is prohibited

Put nodes of reference radius in groups named ,C200' - ,C299'.

Switch on FEMFAT weld.

During analysis, for the nodes in the group C200-299 following influences are ignored (if WELD is ON).

- -Gradient influence
- -Mean stress influence on slope
- -Mean stress influence on cycle limit
- -Surface roughness
- -Mean stress rearrangement (PLAST)

Material assignment and definition of groups named C200 for nodes in the radius

WELD – Example

May 2021 / FEMFAT Support

With shell-solid couplings, only the shell side is analyzed, which typically has the smaller sheet thicknesses and is therefore critical.

Longitudinal Member: WELD assessment under multiaxial loading

Stresses from Unit Loadcases:

MAGNA

Definition of weld seams for the fatigue analysis

If the FEMFAT Result Manager is used to combine results, the results of all assessment points (Root, Toe, Top, Bot) are combined separately.

Longitudinal Member: WELD assessment under multiaxial loading

Visualizer 5.4.1 - ...imCoWood Chevrotet Siverado ESSEEMPAT 13 territat Vongitudinal memory FEMFAT **RESULT: Damage** SCALE: LOGARITHMIC 3.68e-007 MIN: 1e-030 MAX: 3.68e-007 3.68e-008 Node Label: 5130 Damage M/mod: 1.275e-008 1/Damage: 7.841e+007 Rel.Str.Grad: 0 3.68e-009 Log10 Damage: -7.894 Additional Log10 1/Dam.: 7.894 6th Root Dam: 0.04834 Information for 3.68e-010 Stress Ampl.: 56.17 WELD nodes. Mean Stress: 0 Str. Ratio R: -1 atan(Sm/Sa); 0 3.68e-011 LocFatigLim: 109.3 Most crit. finite weld seam (From,To) : 5130,5123 3.68e-012 The detailed Damage: 1.275e-008 Most important ElemLab: 4564 output can be Type: 206 Node Attribute: 100 3.68e-013 found in the Notch Factor: 6,453 Position: NWUTOP protocol file 1e-030 (*.pro) XY Z

MAGNA

FEMFAT spot Fatigue Assessment of Spot Welds, Rivets, Nails

May 2021 / FEMFAT Support

Workflow for spot-weld analysis

In contradiction to other FEMFAT modules FEMFAT spot requires an implementation of the connecting SPOT element. Depending on the method a desired connecting element has to be implemented. Then a FEA has to be performed before the fatigue analysis.

Mind the rules for connecting elements when the force based concept is used in order to obtain suitable results.

MAGNA

The choice of analysis method is dependent on the existing joining technique

Creation of SPOT nuggets can be generated by FEMFAT Spot Remesher or Preprocessor (e.g. ANSA). In FEMFAT different stress selections are available.

Stress based option

Minimum 2 inner elements are needed! Maximum 64 outer elements can be used!

FEMFAT uses the stress components at the top and bottom of the shells to identify the loading type – here an example for pure shear.

Extreme load case: Pure shear load is applied

May 2021 / FEMFAT Support

Selection of the appropriate S/N curve

Å MAGNA

Concept of FEMFAT spot database

FEMFAT SPOT-Database					
< info >					
<general></general>					
<spot_sheet_stress id="DS01"></spot_sheet_stress>					
<rivet_sheet_stress id="DS03"></rivet_sheet_stress>					
<spot_sheet_stress_extended id="DS04"> </spot_sheet_stress_extended>					
<spot_sheet_force id="DS02"> </spot_sheet_force>					
<remesher></remesher>					

SPOT stress based assessment:

The FEMFAT analysis is based on the stresses of the outer nugget elements.

- standard spot nugget <spot_sheet_stress>
- standard rivet nugget <rivet_sheet_stress>
- extended spot nugget
 <spot_sheet_stress_extended>

> **SPOT force based assessment:**

The FEMFAT analysis is based on the forces of connection elements.

 spot elements for force based assessment (CBAR,CBEAM, CHEXA, CWELD, soon: Abaqus Fastener) <spot_sheet_force>

SPOT – Super Elements

May 2021 / FEMFAT Support

Detailed FE-model leads to accurate stiffness and stress results. Assessment of stresses with one master S-N curve independent from load type and direction.

May 2021 / FEMFAT Support

SPOT – Example

May 2021 / FEMFAT Support

Rivets can also be evaluated with different material pairings. The new Rivet Advanced method even offers the possibility to evaluate for punch rivet failure.

Longitudinal Member: SPOT assessment under multiaxial loading

By default, the most 'critical' result is mapped to all nodes. The results analysed for the outer nugget nodes are mapped to the inner nodes for the 'detailed' view.

Longitudinal Member: SPOT assessment under multiaxial loading

May 2021 / FEMFAT Support

FEMFAT + ClaRP Fatigue Assessment of Adhesives

May 2021 / FEMFAT Support

Several calibration loops were required to create the new material file for adhesives based on a master S/N curve.

Way to Fatigue Assessment of Bonded Joints

1. Analysis Concept & Strength Data

2. Validation

Tests have shown that the fatigue analysis leads to conservative results in locally stressed areas. Therefore, a new method for damage assessment was developed. A MAGNA

Workflow for Fatigue Analysis and Damage Assessment

The groups shown here are used in FEMFAT. After fatigue analysis, adhesive layers must be defined for ClaRP using element sets.

Å MAGNA

FE Mesh & Groups

Generate the Adhesive Sets:

Adhesives are analyzed in the middle plane of the layer. Furthermore, specific settings and material files must be used.

FEMFAT – Minimum Input & Analysis Run

Manage Groups
9 - Adh_ELE(MOD.)
9 - Adh_ELE(MOD.)
10 - Bahn_Adh_ELE
11 - Bahn_Adh_GRI_all
12 - Bahn_Adh_GRI_mid(MOD.)
20 - BM1496V_Adh_ELE
21 - BM1496V_Adh_GRI_all
22 - BM1496V_Adh_GRI_mid(M
30 - SiPo498_Adh_ELE
31 - SiPo498_Adh_GRI_all
32 - SiPo498_Adh_GRI_mid(MC

Analysis Parameters:

Analysis Target Damage Endurance Safety Factor Static Safety Factor Stress/Strain Comparison Degree of Multiaxiality	MINER Modified ~ R = const. 3 FEMFAT 5.0 ~ Comp	Filter Type			
Global Parameters Analysis Filter Cuttin Stress Selection Automatic	g Plane Parameters	Cutting Plane/Node Filter 2D-Stresses, Surface Nodes 3D-Stresses, Surface Nodes (3D-Stresses, All Nodes			

Node Characteristics:

Group Selection 9 - Adh_ELE(MOD.)	2
Assign Node Material/Characteristic	s
Material:	1 - SikaPower 493 V
Surface Roughness:	Default (= 1µm) ~
Technological Size at 3D Nodes:	7.500 [mm]
Range of Dispersion (10% to 90%):	1.260

Add Nodes of *_Adh_GRI_mid to Elements of Adh_ELE to create the Analysis Group

Add *_Adh_ELE to *_Adh_GRI_mid for separate analysis of the adhesives

Assign the available Material SP493_FEMFAT54_ClaRP211.ffd to the Analysis Group

Select R = const

Set Abs. Str. Limit to 0 N/mm2

Select 3D-Stresses, All Nodes (for MAX only)

© MPT Engineering / Disclosure or duplication without consent is prohibited

0.00

5

ClaRP has a GUI mode for creating new jobs and performing the analysis. If job files are available, batch mode can be used for process automation.

ClaRP – Minimum Input & Analysis Run

GUI mode:

1. Select FE Entities:

ClaRP 21	.1				-		×
冾 🔒	0 0			[⇒
FE Entities	Fatigue Results	Fracture Analysis	Test Data				
FE-File	NASTRAI	N Bulk	~	1_femod\body_db1.nas	Brow	se	

2. Select Fatigue Results:

3. Save 🖬 & Run 🔿 the job

Material parameters from test are saved in the ClaRP database:

MAGNA

Batch mode:

Job File (*.crp):

Version: ClaRP 21.1	
<pre># FE FE_File:\\1_femod\example.nas</pre>	# file path
<pre># FF FF_File:\\3_femfat\max\example.dma</pre>	# file path

Run the job (*.bat, *.que, ...):

rem
set CP=CALL "C:\path2\software\clarp\win\ClaRP.exe"
rem
<pre>%CP%crp C:\path2\projects\project1\job1.crp</pre>
<pre>%CP%crp C:\path2\projects\project2\job1.crp</pre>

The ClaRP report file gives a clear overview of the critical areas. The output can be sorted by different results.

					0	Computati	ion time:	: 14s		
ANALYSIS REPORT		Virtual	Cracked 2	Cones Data						×
Program Version Date Analysis Content	: ClaRP : 21.1 : Di Apr 13 16:31:22 2021 : Adhesive Layer Assessment on FE-Structures based on Fatigue Analysis Results from FEMFAT	<pre>Virtual Cracked Zones Types combined types are possible ci D > 1 at i corner nodes ei D > 1 at i edge nodes mi D > 1 at i middle nodes</pre>						ب *		**
Notice Comment		In Scope	e							
		Adh TD	Zono ID	Zono Turo	Dmax	Nodo ID (Dmax)	Aeeo Mot	Fouity Lon	Utili Dog	Clapp Po
Concerci Input Data		85	2011e 1D	c2e3	1.578E+04	4260471	SP493	3.53003E+00	1.66476E+00	not
General Input Data		117	3	c2e3	1.057E+04	4363734	SP493	3.51498E+00	1.65767E+00	not
		2	1	c2e2	2.378E+02	4398927	SP493	3.33234E+00	1.57153E+00	not
ClaRP Input		121	1	c2e2	4.228E+02	4474239	SP493	3.22838E+00	1.52250E+00	not
C · \ FEMEAT \ body \ 4	clambody crp	86	1	c2e2	2.752E+01	5477385	SP493	3.21192E+00	1.51474E+00	not
C. (PENEAT (DOUY (4_	_crarb(body.crp	12	1	c2e3	4.935E+03	5572658	SP493	3.14312E+00	1.48229E+00	not
ClaRP Database		42	1	c2e3	3.153E+03	5570711	SP493	3.13976E+00	1.48071E+00	not
C:\FEMEAT\body\4	clam) body drn	89	3	c2e2	2.231E+02	4328595	SP493	3.01723E+00	1.42293E+00	not
c. (rmmni (body (4	_crarp(body.drp	118	1	c2e2	8.232E+01	4435071	SP493	2.90110E+00	1.36816E+00	not
ClaRP Allocation Ta	able	40	1	c2e2	1.911E+01	5616679	SP493	2.89957E+00	1.36744E+00	not
C · \ FEMFAT \ body \ 4	clam/body drna	116	1	c2e2	1.083E+01	4356714	SP493	2.77718E+00	1.30972E+00	not
o. (ranni (bod) (r_	_ordep (body, depu	33	1	c2e2	1.967E+01	5643278	SP493	2.76410E+00	1.30355E+00	not
FE Input		7	1	c2e5	4.102E+02	5641541	SP493	2.75993E+00	1.30159E+00	not
C:\FEMFAT\body\1	femod\body db1.nas	46	1	c2e5	1.902E+02	5643488	SP493	2.42202E+00	1.14222E+00	not
		15	3	cle2	3.098E+02	4329963	SP493	2.36398E+00	1.11485E+00	not
FEMFAT Result		49	1	c2e2	4.111E+01	5570918	SP493	2.36396E+00	1.11484E+00	not
C:\FEMFAT\body\3	femfat\body.dma	124	3	c2e2	7.393E+02	4388406	SP493	2.35127E+00	1.10886E+00	not
		50	5	cle2	3.005E+01	4440378	SP493	2.26355E+00	1.06749E+00	not
Status		45	2	cle4	7.585E+01	5643932	SP493	2.18922E+00	1.03244E+00	not
Analysed Adhesive	e Layer Planes	6	1	c2e6	9.527E+01	5642828	SP493	2.18041E+00	1.02828E+00	not
Fatigue Analysi	is Middle Plane	50	3	e4	1.598E+02	4440198	SP493	2.05837E+00	9.70725E-01	
Fracture Assess	sment Middle Plane									
Scaling	Linear									
Report						1 5 1				
Zones per Layer	r All					1,	.	00	and the set $=$	7
Sorting	Utili. Deg.		~	-) /1-		20	critical 2	Lones
Number of Load Cy	ycles 1			tū i		6 11		_•		
		<i>-</i> .						\ \ /it	$h_{a_{}} > 1$	
		100 C								

May 2021 / FEMFAT Support

Adhesives – Example

May 2021 / FEMFAT Support
Some adhesives have very different material properties. The linear static values used in the FE analysis should be consistent with FEMFAT.

Longitudinal Member: Adhesive assessment under multiaxial loading

MAGNA

For the evaluation of adhesive layer nodes, detailed results can be requested in FEMFAT. Repetition Factors can be considered in ClaRP.

MAGNA

Visualization & Detailed Investigation

May 2021 / FEMFAT Support

Non-metal Fatigue

May 2021 / FEMFAT Support

Assessment of short fiber reinforced plastics in MAX in SPECTRAL (from 5.4.1)

May 2021 / FEMFAT Support

Since a separate mesh is used for the injection molding simulation, the fiber orientations must be mapped onto the FE mesh before the FE analysis.

MAGNA

In FEMFAT the local material parameters will be analzed in the main directions of the anisotropy by inter- /extrapolation between given material data (parallel/ perp.).

Motorcycle Luggage Rack – Results

- FE-Model for fill simulation:
 ~ 1,3 Mio. Elements
- FE-Model with mapped data:
 ~ 400.000 Elements

FEMFAT laminate in channelMAX

May 2021 / FEMFAT Support

The fatigue assessment need to be done in several directions and therefore all this material data must be known from test.

Fatigue assessment of different load directions

LAMINATE can only be used just in the combination of Abaqus (SHELL/ SOLID SECTION, COMPOSITE) and channelMAX.

Fatigue assessment of different load directions in plane

- Necessary material data for fatigue analysis:
 - S-N curve is interpolated between normal and shear
 - Static strength depend on load direction and are taken from Puck's curve
 - Haigh-diagram is interpolated between normal and shear
- Input number of load directions
- Rainflow counting of stress vector projected on each load direction (red lines)
- Linear damage accumulation for each load direction.
- Additional parameters p_{⊥||}^t and p_{⊥||}^c have to be specified, default values for CFK acc. VDI 2014:
 - $p_{\perp \parallel}^{t} = 0.35$ - $p_{\perp \parallel}^{c} = 0.3$

Additional Information

FEMFAT software PRODUCTINFO EVENTS/NEWS SUPPORT DOWNLOAD

FAQs FAQs General Input Installation Material Module basic Module heat General Input Module max Module spot Module weld Output Webinar Material Module basic

May 2021 / FEMFAT Support

FEMFAT software	PRODUCT INFO	EVENTS/NEWS	SUPPORT	DOWNLOAD
FEMFAT Software & Release Notes	Gotting			
Getting Started	started			
Papers	Starteu			
Flyers				

Getting Started

BASIC, HEAT, SPECTRAL
BASIC
HEAT
SPECTRAL
мах
MAX Transient
MAX channel

DRIVING EXCELLENCE. INSPIRING INNOVATION.