

May 19th & 20th, 2021 - ONLINE

Occupants Nose Level Air Temperature Prediction through 1D CAE Advance Cabin Simulation

Kiran Kadam, Mohit Varma, Sambhaji Jaybhay and Sangeet Kapoor

Climate Control, Engineering Research Centre

Tata Motors Ltd.

Date: 19/05/2021

- Introduction
- Simple Cabin Model Vs Advance Cabin Model
- Inputs For Advance Cabin Modelling

- Deck of 14 slides
- Advance Cabin Modelling Along with Complete AC System
- Correlation With Physical Test
- Summary

MAC Performance Validation (Digital, Physical)

- During vehicle development front loading through digital validation is vital
- Work happens on both sides digital as well as physical, digital load cases are closely mapped with physical validation

MAC system has to provide year round cabin comfort to all occupants	Digital	Physical		
Severe/ high ambient	Following parameters are predicted by deploying 1D CAE and 3D CFD:	Performance is validated for following parameters:		
Moderate/ low ambient	 Average vent temperature (1D Simple Cabin) Average cabin temperature (1D Simple Cabin) Refrigerant pressures and compressor power consumption (1D Simple Cabin) 	 i. All AC vent temperatures ii. All occupant nose level temperatures iii. Refrigerant pressures and compressor power consumption 		
High humid and low ambient	 iv. All occupant face and chest level velocities (CFD) v. Air discharge at all AC vents (CFD) vi. Occupant ear level climate noise (CFD and CAE) 	 iv. All occupant face and chest level velocities v. Air discharge at all AC vents vi. Occupant ear level climate noise 		

TATA MOTORS Connecting Aspirations

Mobile Air Conditioning (MAC) System with SIMPLE CABIN Model (1D)

MAC System Components	Туреѕ		
Passenger cabin	 Single, two and three row cabin is modelled as <u>SIMPLE CABIN</u> Average vent and average cabin temperature prediction is possible 		
Fan and Blower	Brushed and Brushless		
Expansion device	Block type, Angle type		
Evaporator Tube and Fin, Plate and Fin, Serpentin			
Compressor	 Fixed Displacement Swash/ Wobble reciprocating Scroll Vane Variable Displacement Internally Controlled Externally controlled 		
Condenser Tube and Fin, Serpentine, electric			
Receiver drier	Integrated and Remote		

TATA MOTORS Connecting Aspirations

Mobile Air Conditioning (MAC) System with ADVANCE CABIN Model (1D)

MAC System Components	Types			
Passenger cabin	 Single, two and three row cabin is modelled through <u>ADVANCE CABIN</u> Individual AC vent and each nose level temperature prediction is possible 			
Fan and Blower	Brushed and Brushless			
Expansion device Block type, Angle type				
Evaporator	Tube and Fin, Plate and Fin, Serpentine			
Compressor	 Fixed Displacement Swash/ Wobble reciprocating Scroll Vane Variable Displacement Internally Controlled Externally controlled 			
Condenser Tube and Fin, Serpentine				
Receiver drier	Integrated and Remote			

© Copyright, Confidential, Tata Motors Limited

Simple Cabin Model Vs Advance Cabin Model

glasses with conditioned air flow distribution

G1, G2, G3 and G4: AC Vent temperatures N1, N2, N3, N4 and N5: Nose level temperatures

- Currently with simple cabin model, only average vent and average cabin temperatures can be predicted
- In order to predict individual AC vent and nose level temperatures, advance cabin modelling is necessary
- © Copyright, Confidential, Tata Motors Limited

Inputs required	Simple cabin model	Advance cabin model			
Compressor	Isentropic and volumetric efficiency curves for different compressor RPM and refrigerant pressure				
Condenser	Geometrical and component level performance data				
Evaporator	Geometrical and component level performance data				
Thermal Expansion Valve (TXV)	TXV 4 quadrant data				
AC plumbing	Geometrical data (inner diameter, length and angle of bends)				
	Cabin volume and total surface area	Cabin volume and total surface area			
Cabin	Window surface area and incidence angle	Cabin geometric details			
	Mass in Passenger compartment	 Cabin wall properties (for glass, door, floor, roof, etc) 			
Conditioned Air flow	Air flow over evaporator (m ³ /hr)	 Air flow over evaporator (m³/hr) Mass flow and diffusion coefficients from 3D CFD simulation 			

Inputs for Advance Cabin Modelling

Cabin geometric details

- Vehicle cabin is divided into number of zones to capture conditioned air temperature in each zones
- Also windshield, window and rear glass angles are given as input for modelling of heat ingress from glass surfaces

Inputs for Advance Cabin Modelling

Cabin wall properties

Cabin wall material and thermal properties input are keyed in for detailed modelling of the cabin

🗋 General data 🜆 Geometric properties 📇 Wall Properties 🧬 Pressure Loss							
General Windscreen Firewall Roof Floor Front Window Front Left Window Front Right Door Front Left Door Front Right Rear Window Rear Left Window Rear Sight	Windscreen Comment Glass 5.1 mm - composite Area [m²] 1 Absorption coefficient 0.36 Transmission coefficient 0.56 Emission coefficient Ambient 0.8 Emission coefficient Inside 0.8						
Door Rear Left	Outside> Inside			ŧ	1	×	
Trunk Window Trunk Left Window Trunk Right	Material	Wall Thickness [mm]	Density [kg/m³]	Heat capacity [J/kg/K]	Heat conductivity [W/m/K]		
	Glass	2.17	2563	800	0.9		
	PVB Film	0.76	1100	1200	0.2		
Inner Walls (interior)	Glass	2.17	2563	800	0.9		
Inner Wall Dashboard							

Inputs for Advance Cabin Modelling

Mass flow and diffusion field coefficients

3D CFD simulation outcome will be given as input for advance cabin model in terms of mass flow and diffusion field coefficients

Component parameters Passenger compartment Comment	ID: 1.CAB	_ c
Initial temperature [°C] V Initial humidity [%] V Heat source in passenger compartment Amount of heat [kW] V 0.5 Humidity source in passenger compartment Amount of humidity [g/h] V 0 Angle of incidence A [°] Angle of incidence B [°]	X 150 Y 100 Z 200	Mass flow and diffusi field input from 3D Cl
Component exadvancedcabin2row.kuliVbo		Ok C.

Advance Cabin Modelling Along with Complete AC System

Advance Cabin Modelling Along With Complete AC System

Air side, nodes and transient simulation parameters

- In air side, cabin inlets (CAB [1,4], CAB [1,3], CAB [1,2] and CAB [1,1]) representing the AC vent in cabin are connected to the four duct point masses
- Simulation parameters are set to perform transient cooldown simulation

Nodes

Madaa	Dentione	N1	
Nodes	Previous	Next	
1	1.CAB[Discharge];1.CND[1,1]	1.TEMP_A;2.TEMP_A	^
2	2.TEMP_A	2.HUM_A	
3	2.HUM_A	9.MFL_A	
4	9.MFL_A	1.CND[1,1]	
5	1.TEMP_A	1.HUM_A	
6	8.MFL_A	1.EVP[1,1]	
7	1.CAB[Recirc]	1.BiR	
8	1.BiR;1.HUM_A	8.MFL_A	
9	1.EVP[1,1]	4.PM;1.MFL_A;2.MFL_A;3.MFL_A	
10	1.MFL_A	1.PM	
11	1.PM	1.CAB[1,4]	
12	2.MFL_A	2.PM	
13	2.PM	1.CAB[1,3]	
14	3.MFL_A	3.PM	
15	3.PM	1.CAB[1,2]	
16	4.PM	1.CAB[1,1]	

Simulation parameters							
General data 😽 🤇	Circuits / Air Path 🥈	🕈 Air side 💶 Simi	ul. param.				
Type O Steady state Transient		Transient Start time [s End time [s]	Transient Start time [s] End time [s]		-		
		Time step [s AC/ST Time	Time step [s] AC/ST Time step [s]				
Constant during si	mulation						
Air humidity	Air Ref.press. Ref.temp. humidity for humidity for humidity		T_init				
50	[%] [hPa] [°C] 50 1013 40		[°C] 55				
Variable during simulation Time RPM Driving Warm-up Ambient Comment A/C on							
[s]	[1/min]	[km/h]	[K]	[°C]			
0	2000	80	3	40		On	
10	2000	80	3	40		On	
55	2000	80	3	40		On	
1800	2000	60	3	40		On	
1801	2200	60	3	40		On	
3000	2200	60	3	40		On	

TATA MOTORS Connecting Aspirations

Correlation with Physical Test: AC performance (Average Vent and Average Cabin)^{Connecting Aspirations}

TATA MOTORS

Correlation with Physical Test: Individual AC Vent Temperature

Time (min)

Correlation with Physical Test: Each Nose Level Temperature

Time (min)

Summary

- 1D CAE simulation tools are widely used for MAC cooldown performance prediction
- Simple cabin modelling helps to predict average vent and average cabin temperatures
- In real scenario, temperature of air inside the cabin is non-uniform, hence it is essential to predict the cabin air temperature distribution
- In order to predict individual vent temperature and each nose level temperature, detailed modelling of vehicle cabin (Advance Cabin) is vital
- Necessary inputs for Advance Cabin modelling are-
 - Thermo-physical properties of cabin material
 - Detailed cabin geometry
 - Conditioned air velocity profile inside the cabin
 - Mass flow and diffusion field coefficients
- Initially multiple iterations are required to get good correlation for each nose level temperature with physical test outcome and also for making model robust
- Accuracy of component functional data (>97%) helps to get better correlation and allows predicting results close to real world scenario

Thank you for your attention...

Questions?

