

Modelling a Low Temperature PEM Fuel Cell in KULI

ECS Simulation Conference 2021 C.Rathberger, Magna

June 21

Content...

- Introduction Fuel Cell Basics
- Modelling Fuel Cells in KULI
- Virtual Vehicle Integration
 - Summary

M MAGRIA

Introduction – Fuel Cell Basics

MAGNA

A PEM fuel cell...

- ... consumes **H₂** (from a tank)
- ... and **O**₂ (from the air)
- ... and generates electric energy
- ... and waste heat

The performance is (mainly) influenced by

- H₂ supply
- O₂ supply
- Power draw (current)
- Cell temperature
- Membrane humidity

Ideal Cell Potential (E_0) A simplified calculation Nernst Losses Voltage leads to an "order of Cell Voltage [V] magnitude" estimation... e.g., typical value 50A require 100cm² 0.7V at 0.5A/cm² 70V require a stack of 100cells 3.5kW electric power **Current Density** [mA/cm²] Losses: Activation Polarization **Concentration Polarization** (1.23V - 0.7V) * 100 * 50A (Reaction Rate Loss) (Gas Transport Loss) 2.65kW losses Ohmic Losses

MAGNA

Example: Toyota Mirai Gen 1 (data and pic from Wikipedia)

Battery: 245V, 1.6kWh capacity (NiMH) **Motor:** 113kW

Date: June 21 / Author: ECS St. Valentin

A typical architecture for a PEM fuel cell system (VTM-relevant components only)

- FC Anode needs to be supplied with H2 from tank
- Tank pressure (e.g. 700bar) needs to be reduced to ~7bar
- Expansion cools down the gas, so it needs to be heated
- Either electrically or by HX
- Unused H₂ needs to be recirculated
- FC Anode needs O₂ (from air)
- To provide sufficient O_2 , the air must be compressed
- Warm-up from compression requires charge air cooling
- To keep the membrane humid, H_2O from waste-air is returned to the suction air
- Waste heat is removed to the cooling system...

Thermal Model of the Fuel Cell

Based on voltage vs. current correlation and the cell operating point, the **losses** can be calculated.

The voltage vs. current correlation \checkmark will depend on the **cell temperature** and **humidity** (\rightarrow membrane resistance) and on supplied H₂ and O₂.

Cell temperature is evaluated from the energy balance considering

- Cell losses,
- Heat from air supply (O₂),
- Heat/cold from H₂ supply and
- Heat rejected to the cooling system

Humidity will be calculated from

- H₂O generated from the fuel cell reaction
- H₂O being stored in the membrane and
- H₂O gathered from or dissipated to the air supply (evaporation...)

The cell interacts with the rest of the system via heat and H₂O rejection

Ń MAGRIA

Modelling Fuel Cells in KULI

KULI Simulation Model (principal parts)

Focus on the Stack...

MAGNA

An Even Closer Look at the Stack

MAGNA

Date: June 21 / Author: ECS St. Valentin

Focus on Cooling Plates and H₂ Tank

Focus on the Humidifier

MAGNA

Date: June 21 / Author: ECS St. Valentin

 $\ensuremath{\mathbb{C}}$ MPT Engineering / Disclosure or duplication without consent is prohibited

M MAGRIA

Virtual Vehicle Integration

Virtual Integration of a Fuel Cell From i-MiEV to Hy-MiEV

Mitsubishi i-MiEV

Task:

Virtually integrate a small fuel cell (sized for average cycle loads) and a small buffer battery (for peak loads) into a small passenger car.

Our base model was the Mitsubishi i-MiEV, we reduced the battery size (16kWh \rightarrow 3kWh) and installed a 12kW fuel cell plus 2kg H₂0 tank.

The fuel cell acts as a "power station" which constantly recharges the battery.

Date: June 21 / Author: ECS St. Valentin

- **Twice (!) the radiator size** needed for cooling fuel cell + powertrain (an alternative would have been a separate FC cooling loop)
- **Stronger coolant pump** needed to provide higher flow-rates (can require bypasses/branches, if maximum coolant flow rates for other powertrain components are exceeded, not considered here)
- **Battery cooling concept** (air-cooled battery in vehicle underbody) should be adapted (e.g. compact coolant-cooled battery pack) for a more detailed analysis... but this has been neglected in this model.

Drive Cycle:

WLTC Class $3 \rightarrow$ Quite ambitious for this car (fast accelrations, top speed > 120kph) Should push the vehicle close to the limit...

Electric Energy Balance

Very simple fuel cell operation strategy implemented:

- No battery charging above 80% SOC
- Full FC power below 50% battery SOC
- Linear scaling of FC output in between (based on battery SOC)

<u>Results:</u>

- Initial battery SOC of 50% leads to 40% SOC after the WLTC
- Can be higher, if FC power is not scaled down during high SOC phase (first 1400s)
- FC is strong enough to operate this vehicle.
- Battery sizing OK.

Fuel Cell Temperature Levels

Results:

- Temperature levels during peak power increase sharply and could become a problem for sustained high loads.
- During the simulated cycle temperature levels are ok, even a little bit low (could be solved with a more refined VTM control strategy)
- Coolant temperature delta over fuel cell exceeds 10K in peak load... coolant mass flow rate should not be lower
- FC is strong enough to operate this vehicle.
- Battery sizing OK.

Fuel Cell Humidity

Results:

- Even though the humidifier is constantly active (bypass not used), a lot of H₂O is rejected to the air flow.
- A reasonable humidification of the fuel cell membrane can be ensured (lambda ~3.3% is a reasonable value)

3.2

3.0

2.8

2.6

Me

500

1000

0

 Higher lambda could be achieved by additional humidification of the H2 side (currently not implemented)

H2 consumption and range

<u>Results:</u>

- For the complete WLTC cycle, a total amount of 0.229kg of H₂ are consumed.
- Considering the driving distance of the cycle (23.25km), this yields a total range of ~203km.
- This value fits well to the "rule of thumb" range of 100km per kg H₂.

M MAGNA

Summary

Date: June 21 / Author: ECS St. Valentin

Summary

We have shown

- How a PEM fuel cell generally works and what infrastructure is needed in a car to operate it
- Which aspects of a fuel cell are relevant from a thermal management point of view and how to model them in KULI
- How a PEM fuel cell can be integrated into an overall vehicle model... and which results can be derived.
- KULI supports the modelling of fuel cells... and especially in combination with it's system simulation capabilities this can provide valuable insights.

We invite you to discover the possibilities together with us!

DRIVING EXCELLENCE. INSPIRING INNOVATION.