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MeH-Reactor
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Reactor Model
Heat transfer modeling in OD-Model
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What are the effects of Metalhydrid-Climatisation on ,Real Life Operation®?




Base Vehicle
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The Mitsubishi i-MIEV = Vehicle Overview A MAGNA

- Compact sized passenger car (Japanese K-car)
« 16kWh battery pack

« 49kW electric motor

* NEDC range 160km (OEM spec)

:> “Real life operational range” influenced by:

» Customer driving profiles
« Heating in winter
 Air conditioning in summer



Model Overview

M MAGNA
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Multi-Zone Cabin Model A MAGNA

Detailed HVAC air
path and passenger
cabin to evaluate the
passenger comfort.

Air ducts and resistances

Multi zone cabin model




Calibration MeH Reactor
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Model Calibration
Results Coolant Temperature

M MAGNA
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—> After engaging of the second reactor very good fit of coolant temperatures.
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Valve Time Shifting .
Results Heating and Cooling Power M MAGNA

Average Heating Capacity Average Cooling Capacity
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Valve control (valve time-shift) is very important to increase the average heating and cooling capacity
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Virtual Vehicle Integration
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Mitsubishi i-MIEV = i-MIFC A MAGNA

Base Vehicle

« Compact sized passenger car (Japanese K-car)
« 16kWh battery pack (~160kg)

* 49KW electric motor

* NEDC range 160km (OEM spec)

Fuel Cell Vehicle Operating Strategy
Changes * 3.2 KWh battery pack (~32kg) The FC is running
* 49kW electric motor at constant power.

« 7 kW Fuel Cell (~7kqg)
* No packaging investigation



Integration of MeH-Reactor .
HVAC-Box M MAGNA

Original Modified

The existing heater core from the electric water
heater will be used as pre HX and is placed in
front of the evaporator.

An air side PTC* replaces the electric water *Air PTC is necessary for re-
heater heat configuration.
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Thermal Layout .
Integration MeH-Reactor and Fuel Cell M MAGNA

The FC is integrated in the
powertrain cooling circuit
upstream the E-Motor.

Fuel Cell

The MeH-Reactor is
integrated in the Powertrain
cooling circuit as well as in
the HVAC circuit (old

heating circuit).
PreHX
HVAC-
Circuit
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Heating vs. Cooling Mode

M MAGNA

Cabin Heating

Powertrain
cooling

Warm reactor (absorption) is used for HVAC-
Circuit to heat up the cabin air.

Cold reactor (desorption) is connected to the
powertrain cooling circuit.
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Cabin Cooling

Powertrain
cooling

AC-Loop u

Cold reactor (desorption) is used for HVAC-
Circuit to cool down the cabin air.

Warm reactor (absorption) is connected to the
powertrain cooling circuit.
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Simulation Results

Date: May 2021 / Author: J. Poehl, M. Kordel © MPT Engineering / Disclosure or duplication without consent is prohibited 24



Simulation Results WLTC
Battery SOC (3.2 kWh)

M MAGNA
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Ambient Conditions:
Baseline 21°C
Summer 30°C
Summer 40°C
Winter -5°C

For baseline the
«— SOC is almost
initial SOC

The range of SOC of the
3.2 kWh battery pack is
necessary for all ambient
conditions.
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Simulation Results

MeH-Reactor Baseline 21°C

M MAGNA
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The FC application with
MeH-reactor works on
vehicle level and supports
cooling @21°C.
Optimization of controls
necessary to reduce the
overshoot.
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Modification of MeH-Reactor

| ]
Changes compared to Test-bench M MAGNA
Reactor Temp

90

20 Reaktorl Reaktor2

. For higher ambient temperatures (40°C) the
T 60 reactor temperature reaches saturation
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g 30 process would change over.

20

10

0

0 50 100 150 250 300 350 400

tir%go[s]
« The pressure of the MeH reactor is increased from 35 bar to 45 bar to increase the
saturation temperature.

* Due to the higher pressure the de- and absorption process is faster. This leads to faster
switching points.

« The mass of the MeH-reactor is increased from 1.49 kg to 2.5 kg.

The following results are generated with this modifications.
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Simulation Results WLTC .
Cabin Temperature (Driver-Zone) MA MAGNA
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Simulation Results WLTC _ - )
Comparison Power Consumption Auxiliaries M MAGNA

Compressor Driving Power Electrical Heating Power

450 1200
200 394.51 . Solar radiation:  ~°2%
= L. = .
Z 3 Solar radiation: z 100 zgoa\r/\/rfmlza °
= 800 W/m?2 =
2 300 S 800
£ 20 £
2 200 177.75 @
=] =]
O 150 O 400
% 100 66.55 %
o 45.65 2 200 111.09
S 50 =TT 23.92 - &

) ] — ; I
Base 21°C Summer 30°C Summer 40°C Winter -5°C
B With MeH ® Without MeH mWith MeH = Without MeH

Significant energy savings for compressor and electrical heater with MeH-reactor.
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Summary and Outlook
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Summary and Outlook G pesereen

The MeH-Reactor can be simulated with KULI and after calibration the
behavior from the test-bench is reached.

The MeH-Reactor and simplified FC were implemented in the overall cooling
system of the Mitsubishi IMIEV to simulate the WLTC.

It could be shown that the MeH-Reactor can support the HVAC-System in
warm and cold conditions significantly with a minimum of changes in the
cooling system.

Less power consumption for compressor and heater as well as faster cool
down and warm up of the cabin.

Optimization of MeH-Reactor size:
— Mass of MeH, Mass of housing, Pressure levels

More detailed modelling of FC

— To optimize the control strategy for the interaction between MeH-reactor, FC and Cooling
System
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